Таким образом, мы получим два данных куба и будем искать два других, сумма которых равна разности данных; так как условие, указанное для задачи 4, выполнено, то решение можно получить без затруднений. Но разность кубов, найденных путем решения задачи 3, равна разности двух первоначально заданных кубов 64 и 125; итак, ничто не мешает построить два куба, сумма которых равна разности данных 64 и 125, что, конечно, удивило бы самого Баше.
Более того, проходя по кругу эти три задачи и повторяя это до бесконечности, получим бесконечно много пар кубов, удовлетворяющих одному и тому же условию; действительно, после того как мы нашли два куба, сумма которых равна разности данных, мы можем методом задачи 2 найти два других, разность которых равна сумме наших двух кубов, т. е. разности первоначально данных; от разности мы перейдем к сумме и так до бесконечности.
OBSERVATIO D. P. F
IX (p. 135)
Ad eumdem commentarium.
QUÆSTIO SECUNDA BACHETI: Datis duobus cubis, invenire duos alios, quorum differentia æquet summam datorum.
Canon: Utrumque datorum cuborum ducito ter in latus alterius, productos divide per intervallum cuborum, et minori quotienti adde majus latus, atque a majore quotiente aufer minus latus; summa et residuum exhibebunt quæsitorum latera cuborum.
QUÆSTIO TERTIA BACHETI: Datis duobus cubis, invenire alios duos, quorum differentia æquet datorum differentiam. Oportet autem duplum minoris excedere majorem.
Canon: Productum ex utroque cubo ter in latus alterius divide per summam cuborum: a majore quotiente aufer minus latus, a minore quotiente aufer majus latus, relinquentur latera quæsitorum cuborum.
Huius quæstionis determinationem non esse legitimam simili quâ usi in primâ quæstione sumus operatione aperiemus.