A tribus numeris in proportione Arithmeticâ possumus formare triangulum, si secundum hanc definitionem sextam formemus illud à medio et differentiâ. Nam solidum sub tribus ductum in differentiam faciet aream dicti trianguli, atque ideo, si differentia sit unitas, solidum sub tribus erit area trianguli.

Перевод:

Nous pouvons former un triangle avec trois nombres en progression arithmétique, en le composant, selon cette définition 6, avec le terme moyen et la différence de deux termes; car le produit des trois termes et de la différence sera égal à l’aire dudit triangle, et, par suite, si la différence est l’unité, l’aire du triangle sera représentée par le produit des trois termes.

OBSERVATIO DOMINI PETRI DE FERMAT

II (p. 61)

Ad quæstionem VIII Diophanti Alexandrini Arithmeticorum Libri II. (p. 85)

Propositum quadratur dividere in duos quadratos.

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos et generaliter nullam in infinitum ultra quadratum potestatem in duas eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.

Перевод:

Наоборот, невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата, и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком малы.