На сетку в тиратроне подается отрицательное напряжение. Пока оно достаточно велико, электроны, едва вылетев из катода, сразу же вынуждены возвращаться обратно. Они не успевают столкнуться с атомами газа, а если сталкиваются, то все равно оказываются не в состоянии их ионизировать: скорость движения электронов для этого еще слишком мала и ток через лампу не идет.

Если постепенно уменьшать отрицательное напряжение, то наступит момент, когда часть электронов прорвется сквозь сетку. Эти «счастливцы» попадут в сильное электрическое поле анода и получат необходимый разбег. На длинном пути от сетки до анода почти каждый из прорвавшихся электронов встретит какой-нибудь атом газа и ионизирует его. Число свободных электронов резко увеличится, начнется лавинная ионизация. Ток резко возрастет, мгновенно дойдя до максимального. Если теперь вновь увеличить на сетке отрицательное напряжение до первоначальной величины, ток отнюдь не прекратится. Наоборот, он будет идти с прежней силой.

Тиратрон — это лампа с «дверцей». Но «дверца» эта весьма своеобразна: ее легко открыть, а закрыть не удается.

Чем же объясняется такое резкое отличие тиратрона от вакуумного триода, который, как известно, способен очень тонко регулировать силу анодного тока? Отличие объясняется именно наличием газа в тиратроне. Когда через лампу проходит сильный ток, в газе появляется много положительных ионов. Они, еще не дойдя до катода, окружают проволоки отрицательно заряженной сетки, притягиваются к ней, образуют вокруг проволочек сетки нечто вроде чехла и своими положительными зарядами нейтрализуют ее действие.

Между такими заэкранированными проволоками продолжают свободно проходить электроны, летящие к аноду. Ток продолжает идти, хотя на сетку и подано, как будто достаточно большое отрицательное напряжение. Его сила будет зависеть только от мощности источника тока и от сопротивления в цепи. Напряжение на электродах лампы при этом сильно снизится, а мощность, затрачиваемая на газовый разряд — неизбежные потери — станет наименьшей.

Чтобы прекратить ток, нужно либо разомкнуть цепь, либо дать отрицательное напряжение на анод. Тогда он притянет к себе положительные ионы от сетки и оттолкнет электроны к катоду. Ионизация прекратится, сетка лишится экранирующих ее ионов, и тиратрон будет вновь заперт — «дверца» закроется.

Тиратрон часто служит для выпрямления тока. При этом на его катод и анод подается переменное напряжение. При переменном токе не требуется разрывать цепь анода, так как при каждом периоде на аноде появляется отрицательное напряжение. Переменный ток сам приводит тиратрон к готовности для работы. «Дверца» закрывается — ток прекращается в тот момент, когда переменное напряжение на аноде, пройдя через нуль, станет отрицательным.

При обычном переменном токе в 50 периодов, ток всегда запирается 50 раз в секунду, а отпирается только при соответствующем уменьшении отрицательного напряжения на сетке. В этом случае он пропускает своеобразный пульсирующий выпрямленный ток.

При помощи сетки можно регулировать среднюю силу этого выпрямленного тока. Он проходит толчками, импульсами, за те полупериоды, при которых на анод подается положительное напряжение. Так как это напряжение возрастает не сразу, а постепенно, в течение каждого рабочего полупериода, то чем большее отрицательное напряжение подадим мы на сетку, тем позже будет прорываться поток электронов сквозь сетку в эти полупериоды, тем короче будут промежутки времени, когда ток идет, и сила проходящего через лампу тока в среднем будет меньше. Таким образом тиратрон может и выпрямлять переменный ток и регулировать его силу.

Весьма важное значение имеет тиратрон как пусковое реле для всевозможных автоматических устройств. Весьма малое уменьшение отрицательного напряжения на сетке тиратрона приводит к образованию анодного тока большой мощности. Иначе говоря, ничтожное изменение напряжения на сетке приводит к включению сильного тока, ранее запертого тиратроном.