Так движения электронов в оболочках атомов, их «прыжки» с высоких уровней на более близкие к ядру атома, — порождают свет.

Способы освобождения электронов

Само собой разумеется, что толчки, испытываемые атомами при сильном нагреве, могут вызвать не только прыжки электронов с уровня на уровень. Достаточно энергичный толчок может выбросить электрон на такое расстояние, что притяжение ядра атома уже будет не в силах возвратить его обратно.

Электрон, выбитый из оболочки атома, перестает быть его «пленником». Электрон начинает самостоятельно странствовать. Это странствование продолжается до тех пор, пока он не попадет «в плен» к какому-либо другому атому.

Нагревание заставляет некоторые электроны вылетать за пределы раскаленного вещества.

Еще в 1733 году ученые заметили, что воздух вблизи раскаленного металла становится проводником электричества. С этим явлением ученые сталкивались постоянно, но объяснения ему не находили. Слишком мало тогда знала наука об электричестве.

То же самое приходилось наблюдать во время опытов с катодными трубками. Раскаленный катод выбрасывает значительно больше электронов, чем холодный.

Все эти наблюдения доказывают, что нагревание заставляет электроны двигаться быстрее, а большая скорость и, следовательно, большая энергия помогает им вылетать за пределы металла. Раскаленный металл всегда окружен легким, невидимым облачком электронов.

Бегство электронов из нагретого тела получило название термоэлектронного эффекта, или термоэлектронной эмиссии. Слово эмиссия означает — выход, выпуск.

Электроны освобождаются из оболочек атомов не только при воздействии высокой температуры. Опытами Столетова доказано, что и свет освобождает электроны.