5. Поговорим об обоях
Теперь мы хотим дать читателю современные представления о природе кристалла. Для этого сначала нам придётся поговорить… об обоях. Посмотрите на рисунок 12. На нём изображена девочка, играющая в мяч. И не одна девочка, а много совершенно одинаковых фигурок. Найдём на этом рисунке обоев тот наименьший кусок, который надо нарисовать художнику, иначе говоря, тот кусок, простым перекладыванием которого можно составить все обои. Чтобы выделить такой кусок, проведём из любой точки рисунка, например из центра мячика, две линии, соединяющие выбранный мячик с двумя соседними. На этих линиях можно построить, как это видно на нашем рисунке, параллелограмм. Совершенно ясно, что перекладываниям этого кусочка в направлении основных исходных линий мы можем составить весь рисунок обоев.
Рис. 12. Рисунок этих простеньких обоев помогает нам понять решетчатое строение кристаллов.
Этот наименьший кусок может быть выбран по-разному: из рисунка сразу видно, что можно выбрать несколько разных параллелограммов, каждый из которых содержит одну фигурку. Подчеркнём, что для нас в данном случае безразлично, будет ли эта фигурка внутри выделенного куска целой или разделённой на части линиями, ограничивающими этот кусок.
Было бы неверным полагать, что, изготовив повторяющуюся на обоях фигурку, художник может считать свою задачу оконченной. Это было бы так лишь в том случае, если составление обоев можно было бы провести единственным способом – прикладыванием к данному кусочку, содержащему одну фигурку, другого такого же, параллельно сдвинутого. Однако кроме этого простейшего способа есть ещё шестнадцать способов заполнения обоев закономерно повторяющимся рисунком, то есть, всего существует 17 типов взаимных расположений фигурок на плоскости. Они показаны на рисунке 13[3].
Рис. 13. 17 типов симметрии плоского узора; элементарные ячейки выделены.
В качестве повторяющегося рисунка здесь выбрана более простая, но, так же как и на рисунке 12, лишённая собственной симметрии фигурка. Однако составленные из неё узоры симметричны, и их различие определяется различием симметрии расположения фигурок.
Мы видим, что, например, в первых трёх случаях рисунок не обладает зеркальной плоскостью симметрии – нельзя поставить вертикальное зеркало так, чтобы одна часть рисунка была «отражением» другой части. Напротив, в случаях 4 и 5 имеются плоскости симметрии. В случаях 8 и 9 можно «установить» два взаимно перпендикулярных зеркала. В случае 10 имеются оси 4-го порядка, перпендикулярные чертежу, в случае 11 – оси 3-го порядка. В случаях 13 и 15 имеются оси 6-го порядка и т.д.