И решение этой задачи — тоже борьба за скорость.

Когда части машин делают десятки тысяч оборотов в минуту, от устойчивости их в работе зачастую зависит успех дела. При больших скоростях развиваются и большие силы, которые стремятся нарушить устойчивую работу машин. И если машина плохо уравновешена, если где-нибудь возникает опасность вибраций, разлетается на куски турбина, выходит из строя мотор, разрушается скоростной самолет.

С этим нельзя не считаться конструктору. Он должен обеспечить устойчивую, надежную работу скоростной машины.

Однако прочность, трение и износ, нагрев, устойчивость — это еще не все, что с новой силой заявляет о себе при больших скоростях.

Самолеты, лопатки турбин, другие машины и части машин, работающие на высоких скоростях, требуют от своих создателей борьбы с возросшим сопротивлением, которое мешает им работать.

Возникают проблемы борьбы с сопротивлением воздуха или жидкости. По-новому они решаются и учеными, и конструкторами, и производственниками.

Непривычные на первый взгляд формы скоростных самолетов — с короткими, отогнутыми, как у ласточки, крыльями, с высоко поднятым оперением — таково решение задачи учеными и конструкторами.

Еще более гладкие, чем раньше, поверхности самолета, где выступы меряются на микроны, где заклепка, торчащая наружу, теперь считается преступлением, — она крадет скорость, — это решение задачи технологами.

Новый двигатель, более мощный, чем раньше, который помогает самолету бороться с сопротивлением, когда скорость растет, — это решение задачи инженерами-моторостроителями.

Для получения больших скоростей нужны большие скорости и приводов — двигателей, дающих жизнь машинам.