Этот перечень можно значительно продолжить.
Словом, выбор у современного инженера неизмеримо больше, чем у его предшественников. Прочность — одно из главнейших свойств, важных для машиностроителя, — выросла у основных материалов в 5— 10 раз.
Как добилась техника таких успехов?
Учение о свойствах и поведении металлов стало путеводной звездой для металлургов, создателей новых сплавов. Новые способы исследования и испытаний дали им возможность заглянуть во «внутренний мир» металла. И все это позволяет ныне «управлять» металлом, менять его свойства сознательно, в нужную нам сторону.
Может быть, слово «управлять» и вызовет улыбку, когда речь идет не о машине, а о мертвом металле. Но какое еще слово могло бы так же точно выразить то, что творят металлурги!
В центробежных воздушных машинах (компрессорах) металл работает при десятках тысяч оборотов в минуту. Он обладает огромной прочностью при невысоких температурах.
В камерах сгорания ракетных двигателей металл работает при 1000°. Он жаростоек при небольших нагрузках, ведь камера неподвижна.
Но как сделать прочный металл жаростойким, а жаростойкий прочным? Как создать жаропрочный сплав, нужный турбинам?
60 тысяч оборотов в минуту и больше развивают опытные газовые турбины. При этом диски турбин раскаляются докрасна, так что светятся в темноте. Центробежная сила стремится разорвать диск, вырвать, из гнезд лопатки, расшвырять их, как камни из гигантской пращи.
Иногда случались такие аварии турбин, когда части машин находили за несколько километров от электростанций. Прочный металл, накаленный докрасна, перестает быть прочным.