Когда приходится слышать о сплаве с «исключительными» качествами, равных которым еще не было, надо спросить: а применяется он в промышленности? Производится ли он в больших количествах?

И если вам ответят, что это лабораторный сплав, тогда вы смело можете усомниться в его исключительности.

Бывали такие случаи. Сплав из лабораторной печи вел себя прекрасно. И прочность, и твердость, и другие свойства отвечали самым жестким требованиям. Однако на заводе получалось другое, и сплаву приходилось отказывать в «путевке в жизнь».

От лаборатории до производства — еще дистанция немалого размера. И то, что инженеры полностью решают задачу, то, что они научились давать металл, не уступающий лабораторным образцам, — это большое достижение металлургии, которое трудно переоценить.

Комбинируя различные добавки, металлурги получают нужные свойства сплавов. Нередко ничтожные количества некоторых элементов резко улучшают материал. Название «гомеопатическая» металлургия, металлургия малых добавок, к которому прибегают инженеры, верно буквально, без кавычек.

Они добиваются исключительной чистоты сплава, ведут жестокую борьбу с каждой нежелательной примесью, с каждым незваным гостем, попавшим при плавке в сплав.

И каждую плавку они заставляют сдавать трудный экзамен.

Мы как-то упомянули, что нельзя сделать части машины из золота или платины. Но разве только золото и платина дороги? Нет, конечно. Есть и еще дефицитные, дорогие элементы. Они-то как раз и нужны для создания высокопрочных сплавов.

В лаборатории, пожалуй, это не составит проблемы. Там можно проводить опыты хоть с радием. А когда радия потребуется не доли грамма, а килограммы и десятки килограммов! Волей-неволей от него придется отказаться.

Выходит, надо искать заменители дорогих, остродефицитных материалов. Молибден, скажем, заменить более доступным, дешевым марганцем.