«Где тонко, там и рвется», — говорит пословица. И бывали случаи, когда в таком «тонком», опасном месте и рвались валы турбин, разлетались на куски быстроходные электромоторы и центрифуги.

Теперь, пожалуй, не покажется преувеличением утверждение ученых, что ответ на вопрос, почему отличаются по прочности образец металла и деталь из него, — это одна из важнейших задач современной техники, техники больших скоростей, давлений, температур, требующей высокопрочных материалов.

Намечаются и используются пути борьбы с вредными «скоплениями» напряжений.

Конструкторы так проектируют машину, чтобы не было резких переходов — от большей толщины к меньшей, от одной формы к другой. Плавные переходы вместо резких, закругленные формы вместо острых. Избегать скопления, концентрации напряжений — таков девиз конструктора.

Идя таким путем, лишь сравнительно немного изменив конструкцию одного электромотора, конструкторы получили возможность увеличить нагрузку в полтора раза без вреда для машины.

Технологи находят способы увеличивать прочность поверхностных слоев металла. Упрочняя поверхность детали, они делают металл более выносливым, как бы «бронируют» его. Не усложняя состава сплава, говорят они, мы делаем его более стойким.

И техника широко применяет сейчас различные способы повышения прочности, которые помогают бороться с вредным влиянием концентрации напряжений.

Рядом с опасным местом, за которое боятся больше всего, делают надрез. Это покажется с первого взгляда странным: вместо того чтобы повышать прочность, ее нарочно уменьшают, да еще как! Рядом с какой-нибудь большой выточкой делают выемку, как будто намеренно портя деталь.

Замечено, что даже клеймо, которое ставят на готовую деталь из прочного сплава, вредит ей. Оно может стать тем самым тонким местом, которое рвется: с него начнется разрушение. Поэтому вместо клейма принятую деталь контролер отмечает особыми чернилами.

Место, где есть углубление, трещина, выемка, — это ранка, которая может перерасти в язву.