Лунная станция.

Конечно, это подсчеты теоретические, и практика внесет свои поправки. Можно предполагать, что в действительности выигрыш в тяге будет не столь велик, но все же весьма значителен.

Не только Луна, не только ближайшие к Земле Марс и Венера, но и далекие Юпитер, Сатурн, Уран, Нептун, Плутон, о которых мы так мало знаем, стали бы доступны для межпланетных кораблей.

Ядерное горючее могло бы полностью обеспечить энергией будущие межпланетные корабли. Оно даст возможность совершать полеты даже с высадкой на планеты и спутники планет и повысит надежность межпланетных сообщений. Путешественники не будут испытывать недостатка в энергии. Отсюда — свобода маневра, что особенно важно в космическом рейсе, в котором могут встретиться всякие неожиданности и трудно рассчитывать на пополнение запасов топлива в пути.

Предполагают, что использование атомной энергии позволит сильно сократить сроки межпланетных путешествий. Например, по одному из предварительных расчетов, полет на Луну займет всего около четырех часов. За четыре часа атомная ракета преодолеет расстояние триста восемьдесят четыре тысячи километров. Полет на Марс занял бы сорок девять часов, в течение которых было бы пройдено около восьмидесяти миллионов километров. Путешествие на Венеру, за сорок миллионов километров, продолжалось бы тридцать шесть часов. Конечно, это подсчеты сугубо приближенные, но они показывают, насколько сможет в будущем возрасти скорость полета. Каждая минута будет означать сотни тысяч и даже миллионы километров!

Примерно в два миллиона раз больше энергии, чем при сгорании бензина, выделяется при распаде атомов такого же количества урана. Тепла же получается столько, что для охлаждения работающего уранового котла нужно прогонять целую реку воды.

При термоядерной реакции, превращающей ядра атомов водорода в ядра атомов гелия, когда происходит не распад, а рождение новых атомных ядер, выделяется еще больше энергии — примерно в восемь-десять раз по сравнению со взрывом атомов урана. Ядерные реакции являются неисчерпаемыми источниками энергии.

Если сопоставить теплотворную способность обычных топлив, которые ныне применяются в ракетных двигателях, с ядерным горючим, то разница будет огромной — в десять миллионов раз.

Три — три с половиной тысячи градусов — такова наивысшая температура в камере сгорания современного ракетного двигателя. В куске же урана при расщеплении атомов — десятки миллионов градусов. Фантастическая цифра! Мгновенное испарение ракеты — вот что это значит.

Тепло надо использовать так, чтобы газ вытекал через сопло с наивысшей возможной скоростью. При этом двигатель не должен перегреваться. Вот две задачи, и их необходимо решить конструктору атомной ракеты.