Судя по всем этим успешным опытам, от электрокультуры можно в будущем ожидать несомненно еще многого, несмотря на то, что эта область очень велика, отличается новизной и, к сожалению, представляет большие трудности.

Как показывает вышеизложенное, воздух как физический фактор является весьма упрямым, тогда как в химии он показал себя очень податливым фактором. Ему мы обязаны в настоящее время перестройкой нашего сельского хозяйства, создавшей возможность питания миллионов все увеличивающегося населения Европы. Чудо размножения хлебов превратилось в действительность лишь в XX веке, когда химии удалось добыть удобрение из воздуха способом, который получил особенный толчок благодаря военной промышленности. Что было бы с сельским хозяйством, если бы в настоящее время оно располагало только навозом, гуано, чилийской селитрой, калием и аммиачной водой — побочным продуктом, получаемым при перегонке каменного угля? Не только сельскому хозяйству пришлось бы вести жалкое существование и урожаи его были бы так же плачевны, как и раньше, но и человечество никогда бы не могло скопляться в столь громадные массы, каковые мы наблюдаем за последние 30 лет. Техника совершила это великое чудо с помощью воздуха, который, как известно, состоит на 4 / 5 из азота и на 1 / 5 из кислорода. Задача химии заключалась в том, чтобы химически связать ценный воздушный азот. Наряду с известным в Норвегии воздушно-селитряным методом получения азота из воздуха, наибольшей известностью и успехом пользуется метод Габер — Боша (аммиачный катализ), который обязан своим открытием проф. Нернсту. Этот метод заключается в том, что воздушный азот и получаемый из угля водород смешиваются в определенной пропорции и при высоком давлении и температуре подвергаются действию катализатора. Людвигсгафен-Оппау и огромные заводы в Мерзебурге в настоящее время изготовляют это ценное вещество. Оба эти предприятия могут ежегодно добывать из воздуха 500 000 т азота, для чего перерабатывается 570 млн куб. м воздуха. Эти цифры говорят сами за себя и наглядно показывают огромное значение этой отрасли техники для народного хозяйства. Наряду с этим методом, подобным же способом удалось за последние годы добыть ценное удобрительное средство — мочевину, а также значительно усовершенствовать прежние способы изготовления искусственного удобрения.

Наряду с методом Габер — Боша баденские красочные фабрики Химического треста располагают методом Франк-Каро, который дал прекрасные результаты. В то время как по методу Габер — Боша соединяют получаемый из угля водород под высоким давлением и при высокой температуре с азотом в аммиак, по методу Франк-Каро пользуются в качестве исходного материала кальцием-карбидом. В Баварии также проектируется добывание азота с помощью местных водяных источников энергии.

Путем лабораторных опытов в 1925 г. открыли возможность получать аммиак из элементов, бомбардируя электронами смесь из водорода и азота, метод, который до сих пор не выходит из стадии лабораторной работы, но возможно в будущем еще принесет большие плоды.

В будущем, по-видимому, суждено сыграть большую роль еще одному совершенно новому методу добывания азота из воздуха, — «Монт-Ценис», который, быть может, совершенно вытеснит прежние методы. Предприятию Монт-Ценис удалось найти катализатор, который под давлением до 100 атмосфер и при сравнительно низких температурах делает возможным соединение азота и водорода в аммиак. Как известно, проф. Нернст также работал при своих первых опытах с давлением в 70 атм., которое впоследствии было повышено проф. Бошем до 250 атмосфер. Дешевизна метода Монт-Ценис не нуждается в пояснении. Независимо от того, что при производстве требуется затрата меньших количеств энергии, открывается возможность рационально использовать газы коксовальных печей, из которых, как известно, может быть получен дешевый водород, и таким образом углепромышленности обеспечивается чрезвычайно широкое поле деятельности.

Огромное значение добывания азота из воздуха и угля уяснится особенно, если мы учтем то обстоятельство, что цена за него, вследствие непрерывных усовершенствований в техническом производстве, непрерывно снижается. В то время как цена азота до войны колебалась от 1,4 марки до 1,6 марки, в настоящее время она упала уже до 85–95 пф., благодаря чему чрезвычайно повысилось потребление азота. В настоящее время германская азотная промышленность значительно превзошла довоенную добычу чилийской селитры.

К огромным завоеваниям последних десятилетий принадлежит получение жидкого воздуха, которое открыло технике прошлого и настоящего времени большие возможности и, быть может, в будущем приобретет значение, которого мы в настоящее время еще не в состоянии предвидеть. До 1877 г. еще не было ясно, можно ли превращать все газы в жидкое состояние. Английский физик Фарадей доказал, правда, что все газы при соответствующей температуре и достаточном давлении могут быть превращены в жидкость, тем не менее до сих пор кислород, водород, азот и окись углерода сопротивлялись всяким попыткам в этом направлении. В 1877 г. женевскому врачу Пикте удалось уже добиться при низких температурах и высоком давлении сжижения кислорода, а французскому физику Кайе — сжижения водорода. Лишь в 1883 г. Вроблевскому и Ольшевскому удалось превратить в жидкое состояние азот и окись углерода. Все эти опыты однако носили, в сущности, чисто лабораторный характер. И только в 1895 г. удалось Линде добиться сжижения воздуха в широком техническом масштабе. С этого времени жидкий воздух оказал человечеству неисчислимые благодеяния. При спасении потерпевших от несчастных случаев, утонувших, в клиниках для обслуживания оперируемых, при нырянии, при восхождении на высокие горы и т. д. — жидкий воздух является необходимым средством.

Не подлежит сомнению, что техника с помощью преобразования воздуха проникла в область, ей до сих пор совершенно незнакомую; в ней в будущем техника, вероятно, встретится с немалыми неожиданностями, которые сильно облегчат человеку его борьбу за свое существование и покорение сил природы.

Разрушение атомов и получение энергии

С веществом и материей дело обстоит так же, как и с бесконечностью вселенной. Мы не находим конца ни в вышину, ни в глубину. Мы спрашиваем себя, что находится над звездами, что находится в бесконечных далях. С другой стороны, мы задаем, себе вопрос, что получится, если мы разложим материю на ее составные части, все более утончая и размельчая их. Придем ли мы при этом к какой-нибудь границе, к какому-нибудь пределу? Из физики нам известно, что материя состоит из мелких частиц, молекул, которые в свою очередь могут быть разложены на атомы. Например, вода состоит из маленьких водяных молекул; каждая водяная молекула — из трех атомов: двух атомов водорода и одного атома кислорода. Эти данные были всего лишь, несколько лет тому назад пределом наших знаний. В настоящее время в этой области наши знания расширились, мы проникли глубже в сущность материи и знаем также, что там действуют чудовищные силы, скрытые от нашего взора.