Ученым пришлось обратиться к теории, численному эксперименту. Была построена инженерная модель столкновения.
И что же? Подробнейшее ее рассмотрение дало неутешительный ответ: необходимой гарантии защиты косморобота от пыли быть не может. В принципе. Это обстоятельство заставило ученых отказаться от промежуточной записи поступающей на борт «Веги» научной информации на запоминающее устройство. Поэтому все сведения сразу же передавались на Землю.
Что и говорить, это условие резко усложнило задачи, стоящие перед конструкторами. Ведь оно означало, что в течение всего пролета станции сквозь кометную атмосферу остронаправленную антенну АМС нужно постоянно ориентировать на Землю. Но как при этом быть с той частью научной аппаратуры, которая, изучая кометное ядро оптическими средствами, должна постоянно нацеливаться на зону наибольшей яркости «косматой звезды»? Как «развязать» этот непростой узел проблем, осложняющийся еще и тем, что полет АМС в атмосфере кометы будет, по всей вероятности, «слепым»? Следовательно, ориентировать станцию с помощью оптических датчиков скорее всего не удастся. Стабилизировать аппарат пришлось при помощи гироскопов.
Вдумайтесь в эти взаимоисключающие условия задачи. С одной стороны, требовалось точно держать пролетный аппарат на траектории, с другой — приборам и датчикам, находящимся на его борту, нужно прицельно, с точностью до угловой секунды, постоянно брать «на мушку» небесное тело, угловые размеры которого непрестанно меняются!
Задача подобного класса сложности никогда не решалась мировой наукой. Пришлось разрабатывать принципиально новую исследовательскую платформу.
— И такая в прямом и переносном смысле платформа, — говорит один из создателей необычной конструкции Г. Сасин, — была создана в кратчайшие сроки специалистами Института космических исследований совместно с чехословацкими учеными и инженерами. С ее помощью удалось «развязать» приборный комплекс и станцию, сделать его независимым от ориентации АМС.
В свое время для вертикальных ракет-зондов конструировали простейшие платформы, используемые для наведения научных приборов на Солнце. Потом стали оснащать ими спутники связи. С их помощью направленные антенны могли не отрываясь следить за определенным наземным пунктом.
Но все эти элементарные «подставки под оборудование» не могли бы, разумеется, обеспечить высокой точности наведения исследовательских инструментов, эффективность работы которых сильно зависит от положения в пространстве относительно объекта наблюдения.
Без преувеличения можно сказать, что автоматическая стабилизированная платформа (АСП) открыла новое направление в развитии космического приборостроения. Это сервомеханизм, как его называют конструкторы, массой около 100 кг с двумя степенями свободы, который с минимальной погрешностью может перемещаться в двух взаимоперпендикулярных направлениях. Научная аппаратура массой 80 кг была установлена на раме платформы, которая в течение почти 15-месячного полета к комете Галлея была пристегнута специальными креплениями к расширяющейся части пролетного аппарата. И лишь недели за две до встречи с «косматой звездой» три пиропатрона открепили эту платформу. Распрямляясь, мощная пружина торсиона перевела платформу в рабочее положение. Далее отщелкнулись крышки телевизионных объектов и датчиков наведения. Так платформа обрела «зрение» и, подчиняясь командам бортового микропроцессора, в автоматическом режиме начала разыскивать комету.