Малюс (1776–1812), офицер, служил в инженерных войсках в Египте и там же, в своей палатке, в которой поправлялся после болезни, начал заниматься изучением теории света. Продолжая числиться на службе, он вместе с тем исполнял обязанности экзаменатора в Политехнической школе (1805). В 1807 году Малюс уже опубликовал два важных мемуара; в 1808 году, наблюдая отражение солнца в окнах Люксембургского дворца при помощи двупреломляющей призмы, он заметил, что интенсивность изображения диска, доходя до полного исчезания, разнится в зависимости от угла наклонения отраженного угла. Отсюда он заключил, что отражение сообщает свету особое свойство; это свойство (поляризацию) Малюс объяснил с точки зрения господствовавшей в то время теории истечения и точно определил все законы, которым оно подчиняется. Таким образом, простое наблюдение из окна дома на улице Анфер привело к открытию бесчисленного множества явлений, дотоле абсолютно неизвестных, а между тем в наше время ими постоянно пользуются для определения минералов, горных пород, состава жидкостей и даже газов.
Малюс умер от болезни легких, его открытие довел до конца Араго (1786–1853). Молодой астроном, вернувшись из Испании, сразу сделался членом Института и проявил блестящую деятельность во всех отраслях науки. В 1811 году он занялся проверкой законов Малюса при помощи трубки Рошона[114], имевшейся в обсерватории. Объектив этой трубки был сделан из горного хрусталя. До Араго ни один астроном не подумал направить трубку Рошона на землю, а между тем Араго благодаря этому установил факт, что два изображения, отраженного солнечного диска окрашиваются в дополнительные цвета. Таким образом была открыта хроматическая поляризация.
Био (1774–1862), с 1803 года член Института в качестве геометра и профессор физики в Коллеж де Франс, занял впоследствии кафедру астрономии в Сорбонне. В 1816 году ой сделал капитальное открытие в области физики: он нашел, что некоторые вещества обладают, способностью вращать плоскость поляризации. Этим открытием Био воспользовался для анализа сахарных растворов.
Френель (1788–1827), инженер путей сообщения, преобразовал всю математическую оптику. Он опроверг гипотезу истечения и вернулся к волнообразной теории. Однако лишь в 1815 году, находясь в период Ста дней в опале как роялист, Френель[115] посвятил свои невольные досуги опытам с радужными полосами, получающимися при диффракции; в этой области он не пошел дальше англичанина Томаса Юнга, который успел добиться того же в 1803 году.
Гей-Люссак (1778–1850) и Дюлонг (1785–1828) — оба профессиональные химики. Первый готовился в инженеры путей сообщения, когда Бертолле, возвратившийся из Египта, взял его к себе в лабораторию. Вскоре он сделался репетитором, а потом и профессором химии в Политехнической школе Состояние здоровья не позволило Дюлонгу поступить в артиллерию, и он стал врачом, но главным образом занимался химией. Бертолле и его взял к себе в Аркейльскую лабораторию (1811). Дюлонг открыл хлористый азот, но это ему стоило сначала пальца, а потом и глаза. Около этого же времени он поступил адъюнкт-профессором в Нормальную школу.
Однако в эту эпоху химикам предстоял ряд исследований чисто физического характера. Классификация газов и постепенное увеличение числа их вследствие выделения новых элементов или открытия новых соединений вызывали необходимость изучения их нехимических свойств. Надо было определить плотности газов, коэффициент расширения, теплоемкость. Те же вопросы выдвигались и относительно паров; изучение же плотности паров было тем более важно, что водяной пар уже получил механическое применение. Необходимо было вывести общие законы и по возможности связать физические свойства с химическими.
В 1802 году Гей-Люссак начал с того, что установил практически важный, хотя и не строго точный закон, что расширение газов не зависит от их давления и что коэфициент расширения газов есть величина постоянная. Этот закон Гей-Люссак распространил на пары и впоследствии доказал, что плотность паров одинакова в пустоте и в газообразных смесях. Он изучил также явление охлаждения газов вследствие расширения и посредством опыта с двумя шарами (1807) заложил одну из важнейших экспериментальных основ механической теории теплоты[116].
Проверив на опыте законы капиллярности, теоретически установленные Лапласом, Гей-Люссак в 1804 году совершил два знаменитых полета на воздушном шаре с целью научного исследования атмосферы. В первый раз он и Вио поднялись на высоту только 4000 метров, но во второй раз он один поднялся на высоту 7000 метров.
В 1806 году Гей-Люссак и Гумбольдт произвели многочисленные опыты точного анализа воды и установили простое отношение объемов обоих газов, входящих в ее состав. Дальнейшие опыты были прерваны поездкой в Италию, предпринятой обоими учеными. В Италии Гей-Люссак занимался изучением явлений магнетизма. Лишь в 1808 году, будучи уже два года членом Института, Гей-Люссак решился провозгласить закон, справедливо носящий его имя, — что объемы химического соединения и составных его частей в газообразном состоянии находятся в простом отношении. Так впервые было установлено численное соотношение между физическим свойством тела (плотностью) и химическим. Второй закон этого рода открыли Дюлонг и Пети[117].
Академия наук в 1811 году поставила на конкурс вопрос о теплоемкости газов. В 1813 году Академия присудила награду Ларошу и Берару, изобревшим метод определения коэфициента теплоемкости при постоянном давлении; впрочем, они не добились окончательных результатов; В 1815 году Академия поставила на конкурс вопрос об охлаждении. Дюлонг и Пети сообща занялись ими выполнили капитальную работу. Произведя по заранее намеченной программе ряд опытов при постоянном объеме, они установили закон равенства теплоемкости при равенстве объемов для всех простых газов.