С другой стороны, новые открытия, изучение функций, к которым привело интегральное исчисление, особенно же эллиптических функций, открыло в анализе область, дотоле не исследованную, где чистое умозрение пожало обильнейшие жатвы и получило возможность быть приложенным при помощи истинно научных методов к задачам физики, разрешившимся в предшествующем веке путем гипотез, обыкновенно недостаточно широких и в силу этого сомнительных. Истинные начала приложения математики к физике зарождаются, таким образом, лишь в XIX веке; то, что выработали предыдущие века, больше всего пригодилось астрономии.

Эту эволюцию новой математики мы попытаемся изобразить лишь в общих чертах; нижеследующий сжатый очерк даст, надеемся, возможность оценить важность той части развития математики, которая относится к периоду с 1815 по 1847 год.

Современная геометрия: Понселе, Шаль, Мебиус, Штейнер. Монж основал во Франции блестящую школу геометров[56], по большей части находивших применение своим познаниям на военной или гражданской службе; один из них, Понселе (1788–1867), офицер инженерных войск, взятый в плен под Красным и живший в Саратове в продолжение 15 месяцев, составил там без помощи какой бы то ни было книги заметки[57], из которых составилось капитальное сочинение под названием Трактат о проективных свойствах фигур (т. е. свойствах, не изменяющихся от проектирования). С другой стороны, Пон-селе развил теорию взаимной полярности и вывел из нее закон двойственности. Но его работы, посланные в Академию наук в 1824 году, не встретили того приема, какого он ожидал; Коши в своих докладах ставил новую геометрию ниже анализа[58], и Понселе, надолго сохранивший об этой сравнительно маленькой неудаче неприятное воспоминание, отдался почти исключительно изучению практической механики[59].

Зато Брюссельская академия[60] открыла двери этой науке, добившейся здесь полного торжества. Две записки Мишеля Шаля (1793–1880), представленные в декабре 1829 года и весьма полно обработанные для напечатания, закончились знаменитым Историческим очерком (Apergu historiqueJ, за которым последовала Записка о двух общих принципах науки — двойственности и гомографии (Memoire sur deux principes generaux de la science, la dualite et la homographie, 1837), имевшая громадный успех. Шаль, который по окончании Политехнической школы в 1814 году в течение 10 лет состоял биржевым маклером, с 1828 года всецело отдался науке и выдвинулся многочисленными статьями, напечатанными в Journal de YEcole poly technique, в Annales mathematiques Жергона[61] и в Correspondance Кетле. В 1841 году он получил кафедру геодезии и теории машин в Политехнической школе, в 1846— кафедру геометрии в Сорбонне, но ему суждено было войти в Академию только в 1851 году. Его карьера этим далеко не закончилась, и он был одним из немногих математиков, до самой старости сохранивших гениальную способность к открытиям.

Между тем Германия, где математические традиции свили себе не такое прочное гнездо, как во Франции, с жаром устремилась на новый путь.

Пруссак Мебиус (1790–1868), ученик Гаусса, с 1815 года профессор в Лейпциге, в 1827 году обнародовал свое Барицентрическое исчисление (Бег barycentrische CalculJ и напечатал множество трудов в Журнале Крелле (Journal fur die reine und angewandte Mathematik), основанном в Берлине в 1826 году. Главной заслугой Мебиуса является исследование новых логарифмов, усовершенствование системы обозначений, употребляемых для упрощения геометрических рассуждений и вычислений. Он же первый предложил ввести в употребление новые системы координат.

Якоб Штейнер (1786–1863), родившийся в Бернском кантоне, поселившийся в Берлине и подружившийся с Крелле, издал в 1832 году свое Систематическое развитие зависимых геометрических образов друг от друга (Systematische Ent-wicklung der Abhdngigkeit geometrischer Gestalten voneinander), которое вместе с Геометрией положения Штаудта (1847)[62] составляет основу синтетической геометрии в ее нынешней форме. В 1834 году для Штейнера в Берлине создали новую кафедру, которой он стяжал громкую славу. Открытия Штейнера относительно свойств кривых и поверхностей высших порядков так быстро следовали одно за другим, что он нередко помещал их без доказательств в Журнале Крелле, где они долгое время составляли проблемы для исследователей. Штейнер словно ненавидел анализ и старался привести его в такое состояние, чтобы развитие его мыслей нельзя было проследить. В некоторых случаях, по признанию Гессе, ему это удавалось. Имя Штейнера по справедливости связывается с двадцатью семью прямыми и характеристическим пентаэдром, принадлежащим к поверхностям третьего порядка.

Heэвклидовы системы: Лобачевский, Болиай. На арену научной мысли вступают славяне и венгры, дебют которых отмечен необычайной смелостью.

Как известно, Эвклид принимал без доказательств то, что в плоскости через точку можно провести только одну прямую, которая, сколько бы ее ни продолжали, не встретит другой данной прямой. Этот постулат, еще в древности бывший объектом многочисленных попыток доказательства, так и остался камнем преткновения. Но очень немногим геометрам приходила в голову мысль попробовать вывести следствия из противоположной гипотезы, по которой через данную точку можно провести, не встречая данной прямой, бесконечное множество прямых, заключенных в угле, величина которого зависела бы (по особому закону, который надлежит определить) от расстояния точки от данной прямой[63].

Лобачевский (1793–1856), казанский профессор, изложил в 1829 году свои взгляды в очерке, а в 1836–1838 годах обнародовал свои Новые начала в геометрии с полной теорией параллельных, где он развил в ясной и точной форме гипотезу, обратную эвклидову постулату. Его сочинения, написанные по-русски, долго оставались неизвестны за границей, и краткое резюме его Воображаемой геометрии, которое он напечатал в Берлине в 1840 году, также прошло незамеченным.