При всяких подобных вычислениях нужно всегда иметь в виду учение о статистических ошибках, определяющих точность выводов, и в данном случае уверенность делаемых предсказаний. В частности вычисляемые для второго поколения величины M F2 и σ F2 будут том точнее, чем на большем материале они будут вычислены. Соответственно и предсказания будут точнее, и их точность по общему закону будет пропорциональна корню квадратному из числа особей. Увеличивая число особей в четыре раза, мы повышаем точность вдвое (вдвое уменьшаем величину ошибки). Однако только по этим данным и могут быть достаточно правильно оценены перспективы данного скрещивания. Так, известно по опытам биологов, что при скрещивании двух видов в F 2 идет столь сложное-расщепление, что даже при довольно значительных количествах-особей F 2 не удается извлечь формы, даже повторяющие свойства родителей, а не только выходящие за их пределы. Тем не менее, вычисляя сигму, можно будет с уверенностью предсказать, что выход за пределы родительских форм все же может быть достигнут, хотя бы при помощи дальнейших скрещиваний.
Во всяком случае важно иметь в виду следующее: как бы ни был обширен эксперимент, в F 2 межвидового скрещивания мы получаем лишь ничтожную долю генотипов, возможных к по-лучению в этом скрещивании. Поэтому-то перед нами и стоит ответственная задача по. этой ничтожной доле суметь оценить дальнейшие перспективы данного скрещивания. Нужно иметь в виду, что уже при различии между видами в 10 генах в F 2 должно возникать 1024 комбинации генов и 59049 различных генотипов (2 10 и З 10 )! Между тем при скрещивании таких сравнительно близких видов растений, как Antirrhinum majus и A. molle, Баур считает, что в F 2 происходит расщепление примерно по 100 генам, т. е. одно число возможных комбинаций значительно превышает величину с 30 нулями (1 000 000 000 000 000 000 000 000 000 000).
Между тем и эта величина очень мала по сравнению с фактической. Если например у коровы 30 пар хромосом, то различие в 100 генах достигается уже тогда, если в каждой хромосоме коровы всего лишь 3 гена будут отличаться от генов например бизона. На самом деле вероятно каждая хромосома коровы от каждой хромосомы бизона отличается гораздо большим числом генов.
Но даже если число 2 100 уменьшить в миллиарды раз, то и тогда будет ясно, что даже при тысячах особей F 2 это будет лишь ничтожной долей тех бесчисленных комбинаций, которые могут возникнуть. А поэтому умение оценить по этим намекам действительно возможные перспективы скрещивания чрезвычайно важно. Здесь одинаково важно 1) во-время определить, что в данном скрещивании нет интересных перспектив и что следовательно с ним не стоит дальше работать, не стоит затрачивать на него силы и средства и 2) оценить, что можно ожидать от скрещивания даже тогда, когда первые сотни особой F 2 еще не дают чего-либо интересного.
Проблема проектирования
Проектирование новых форм животных, как мы кратко изложили в. первой главе, должно будет явиться той руководящей теорией, которая станет стержнем гибридагогии. Правда, мыслима гибридизация по «принципу» — скрещивай все и вся, авось что-нибудь ценное и получится. Но это конечно не принцип социалистического, планового хозяйства и науки. Мы должны суметь поднять теоретический уровень работы настолько, чтобы быть в состоянии четко и конкретно ставить себе задачи и прямо и с максимальной производительностью труда и экономией сил и средств эти задачи разрешать. Для этого мы и должны научиться проектировать новые формы живых существ, как бы трудны эти работы ни были и какого бы всеобъемлющего синтеза биологических, а частично и других знаний они ни потребовали.
В проектировании новых форм животных можно различить три ступени:
1) народнохозяйственный эскиз-заказ;
2) морфо-физиологический проект фенотипа;
3) генетический рабочий план построения генотипа.