Рис. 1.

Для полной характеристики орбиты данной планеты потребовалось ввести понятие о шести величинах, так называемых элементах орбиты. Одним из них является большая полуось орбиты, выражаемая в единицах большой полуоси земной орбиты. Последнюю поэтому называют «астрономической единицей» Второй элемент определяет степень вытянутости эллипса и измеряется величиной его эксцентриситета.

Рис. 2. Конические сечения.

Для круговой орбиты эксцентриситет равен нулю и растет с увеличением вытянутости эллипса. При эксцентриситете, равном единице, эллипс становится бесконечно вытянутым, так что если один из его фокусов остается на месте, то другой отодвигается в бесконечность, и две ветви этого эллипса в пределе становятся параллельными друг другу: они никогда больше фактически не соединяются. Такая, уже разомкнутая кривая называется параболой и изображена на рис. 2. Третий элемент определяет угол i, под которым плоскость планетного эллипса наклонена к плоскости земной орбиты (плоскость эклиптики), и называется наклонением.

Четвертый элемент определяет положение в пространстве той линии, по которой пересекаются плоскости планетной и земной орбит. Он измеряется углом Ω, который отсчитывают от некоторого неизменного направления, идущего от Солнца в мировое пространство. Этот элемент называют долготой восходящего узла.

Пятый элемент указывает угол Ω который с упомянутой линией пересечения плоскостей, называемой линией узлов, образует направление от Солнца на перигелий планетной орбиты. Этот элемент называют расстоянием перигелия от узла и выражают его в градусах.

Рис. 3. Элементы планетных орбит.

Шестой элемент представляет один из моментов времени, когда планета при своем движении проходит через точку перигелия.