В работе, представленной в Академию в 1784 году, но напечатанной в ее трудах тремя годами позднее, Лежандр вводит математическое понятие о так называемых полиномах, носящих с тех пор его имя. Он доказывает, что если некоторая однородная жидкая масса, принимаемая за фигуру вращения, равномерно вращается вокруг оси, то эта фигура, в случае равновесия, должна быть непременно эллипсоидальной.
Вслед за этим Лаплас в сочинениях 1782 года (напечатанных в 1785 г.) доказал, что теорема эта остается верной и в том случае, если допустить для жидкой массы любую фигуру, достаточно близкую к шару. Напоминая об этом обстоятельстве, Лежандр в начале своей работы говорит, что теорема, послужившая темой его сочинения, была уже рассмотрена в более общей форме и более глубоко Лапласом. Он должен, однако, отметить, что дата его сочинения более ранняя и что новое доказательство, зачитанное им на заседаниях в июне и июле 1784 года, позволило Лапласу углубить это исследование и довести его до сведения ученых коллег в виде более полной теории.
Несколько позже, в начале сочинения, опубликованного в трудах Академии по поводу той же проблемы, Лежандр, предполагая, что жидкая масса образована слоями различной плотности, говорит: «В сочинении г. Лапласа, напечатанном в начале этого тома, можно найти изыскания, аналогичные моим. На это я замечу, что мое сочинение было представлено 28 августа 1790 года и что дата труда г. Лапласа является более поздней».
В пятом томе своей «Небесной механики» Лаплас с некоторым запозданием приводит в краткой сводке имена тех своих предшественников и современников, а среди них и Лежандра, которых он своевременно не упомянул в предшествующих томах.
Все же это составляет приятный контраст в сравнении с поступком того же Лежандра, который уже в старческом возрасте (80 лет) писал Якоби в связи с теорией возмущений: «Этот предмет возбуждает большой интерес; о нем я думал неоднократно и о нем то тут, то там я высказал ряд идей. Я убеждался, что всякий раз как я занимался этим серьезно и последовательно, я находил кое-что новое в сравнении с моими почтенными коллегами Лагранжем и Лапласом. Если не считать прекрасных результатов, полученных ими относительно дифференциалов эллиптических элементов, выраженных в функции возмущений, то я не вижу, чтобы они продвинули науку дальше того положения, которое она занимала во времена Эйлера, Клеро и Даламбера».
Лаплас никогда не позволял себе лживых и злобных наветов, какие, например, допустил в отношении него отчасти его же ученик Пуансо, писавший: «Лаплас никогда не видел истину, разве только случайно. Она прячется от этого тщеславного человека, который говорит о ней только в неясных выражениях. Однако он пытается превратить эту неясность в глубокомыслие, а своим затруднениям он придает благородный вид вынужденной заботы, как человек, который боится сказать слишком много и разгласить секрет, которого у него никогда не было».
Стоит ли говорить, что обе оценки – Лежандра и Пуансо – близоруки и односторонни. В своем игнорировании заслуг других ученых Лаплас в общем шел не дальше многих из своих современников. Эта черта свойственна многим деятелям науки капиталистического мира. Только в нашем социалистическом обществе пролетарская гуманность изживает этот недостаток, искореняя остатки капитализма в сознании людей.
Как увидим, суровый и неприветливый по отношению к равным себе ученым, Лаплас совершенно иначе относился к младшему поколению, к своим ученикам и последователям.
Астрономия и математика
Самое поверхностное рассмотрение работ Лапласа убеждает в том, что он неоднократно возвращался к одному и тому же вопросу, чтобы уточнить, улучшить и закончить свои предшествующие исследования. Пуансо говорил, что Лаплас «вырывал свое решение ногтями и зубами». Решительность и настойчивость Лапласа были поразительны.