FOOTNOTES

1 Sei insbesondere auf die Darstellung verwiesen, welche Maxwell in seinem Treatise on Electricity and Magnetisme (Cambridge 1873) gegeben hat. Dieselbe entspricht, was anschauungsmässige Behandlung angeht, genau den Gesichtspuncten, die auch ich im Texte verfolge.

2 Man vergl. den grundlegenden Aufsatz von Kirchhoff im 64. Bande von Poggendorff’s Annalen: Ueber den Durchgang eines elektrischen Stromes durch eine Ebene (1845).

3 Die Behauptungen des Textes hängen, wie man weiss, auf das Engste mit der Theorie der sogenannten Doppelbelegungen zusammen, wegen deren man Helmholtz in Poggendorffs Annalen Bd. 89, p. 224 ff. (Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, 1853) sowie C. Neumann in dessen Buche: Untersuchungen über das Logarithmische und Newton’sche Potential (Leipzig, Teubner, 1877) vergleichen mag.

4 Nach dem Vorgänge von C. Neumann, Vorlesungen über Riemann’s Theorie der Abel’schen Integrale, Leipzig, 1865.—Die Einführung der Kugelfläche läuft sozusagen der Ersetzung von z durch das Verhältniss [formula] zweier Variabler parallel, wodurch, wie man weiss, die Behandlung unendlich grosser Werthe von z auch formal unter die der endlichen Werthe subsumirt wird.

5 Unter [formula], [formula], [formula] rechtwinklige Coordinaten verstanden, sei die Gleichung der Kugel [formula]. Projectionspunct sei [formula], [formula], [formula], Projectionsebene ([formula]-Ebene) die gegenüberliegende Tangentialebene (die [formula]-Ebene). Dann folgt:

[formula]

Bezeichnet man mit [formula] das Bogenelement der Ebene, mit [formula] das entsprechende Bogenelement der Kugel, so kommt:

[formula]

eine Formel, welche für das Folgende insofern besonders wichtig ist, als sie die Abbildung als eine conforme charakterisirt.

6 Man vergleiche hierzu und zu den folgenden Entwickelungen: Beltrami,
Delle variabili complesse sopra una superficie qualunque; Annali di
Matematica, ser. 2, t. I, p. 329 ff.—Die besondere Bemerkung, dass
Oberflächenpotentiale bei conformer Abbildung ebensolche bleiben,
findet sich in den in der Vorrede citirten Schriften von C. Neumann,
Kirchhoff und Töpler, dann auch z. B. bei Haton de la Goupillière:
Méthodes de transformation en Géométrie et en Physique Mathématique,
Journal de l’Ecole Polytechnique, t. XXV, 1867 (p. 169 ff.).

7 Es ist übrigens nicht schwer, sich auch ohne alle Formel von der
Richtigkeit jener Behauptung Rechenschaft zu geben; man sehe die
wiederholt citirten Arbeiten von C. Neumann und Töpler.

8 Ein besonders übersichtliches Beispiel von doch nicht zu elementarem
Charakter gibt die Ikosaedergleichwng (siehe Mathematische
Annalen, Bd. XII, p. 502 ff.). Dieselbe lautet, wie man weiss:

[formula]

ist also (für z) eine Gleichung vom sechszigsten Grade. Die Unendlichkeitspunkte von w fallen zu je 5 in 12 Punkte zusammen, welche die Ecken eines Ikosaeders sind, das der Kugel, auf welcher wir z deuten, einbeschrieben ist. Den 20 Seitenflächen dieses Ikosaeders entsprechend zerlegt sich die Kugel in 20 gleichseitige sphärische Dreiecke. Die Mittelpunkte dieser Dreiecke sind durch [formula] gegeben und stellen ebensoviele Kreuzungspuncte von der Multiplicität Zwei für die Function w dar. Hiernach kennt man (unter Einrechnung der Unendlichkeitspuncte) von den [formula] Kreuzungspuncten bereits [formula]. Die 30 noch fehlenden werden durch die Halbirungspuncte der 30 Kanten, die jenen 20 sphärischen Dreiecken angehören, geliefert.

[Illustration: Fig. 13.]

Fig. 13.

Die beistehende Figur repräsentirt in schematischer Weise eines jener 20 Dreiecke und auf ihm den Verlauf der Strömungscurven; auf den 19 übrigen Dreiecken ist die Sache genau ebenso.

9 Die in diesem Paragraphen gegebene Darstellung weicht von der durch Riemann selbst gegebenen zumal dadurch ab, dass Flächen mit Randcurven vorab überhaupt nicht in Betracht gezogen werden und also statt der Querschnitte, die von einem Randpuncte zu einem zweiten laufen, sogenannte Rückkehrschnitte zur Verwendung gelangen (vgl. C. Neumann, Vorlesungen über Riemann’s Theorie der Abel’schen Integrale, p. 291 ff.).

10 Es ist immer nur an Umformung durch stetige Functionen gedacht. Ueberdies sollen bei den willkürlichen Flächen des Textes bis auf Weiteres gewisse besondere Vorkommnisse ausgeschlossen sein. Es ist am Besten, sich dieselben ohne alle singuläre Puncte zu denken; erst später kommen Verzweigungspuncte und damit Selbstdurchsetzungen der Fläche in Betracht (§. 13). Die Flächen dürfen jedenfalls keine Doppelflächen sein, bei denen man von einer Flächenseite durch continuirliches Fortschreiten auf der Fläche zur anderen Flächenseite gelangen kann; man vergleiche indess §. 23. Ueberdiess wird vorausgesetzt—wie man es immer thut, wenn man sich eine geschlossene Fläche als fertig gegeben denkt—dass die Fläche durch eine endliche Zahl von Schnitten in einfach zusammenhängende Theile zerlegt werden kann.

11 Damit soll keineswegs gesagt sein, dass diese Art geometrischer Evidenz nicht noch der näheren Untersuchung bedürftig sei. Man vergleiche die Erläuterungen von G. Cantor in Borchardt’s Journal, Bd. 84, p. 242 ff. Es bleiben inzwischen diese Untersuchungen von den Darlegungen des Textes ausgeschlossen, da es für letztere Princip ist, auf anschauungsmässige Verhältnisse als letzte Begründung zu recurriren.

12 Man sehe C. Jordan: Sur la déformation des surfaces in Liouville’s
Journal, ser. 2, Bd. 11 (1866). Einige Puncte, die mir besonderer
Aufklärung zu bedürfen schienen, sind in den mathematischen Annalen,
Bd. VII, p. 529, und Bd. IX, p. 476, besprochen.

13 Die Definition dieser Unendlichkeitspuncte bezog sich zunächst nur auf die Ebene, bez. die Kugel. Aber es ist wohl klar, wie dieselbe auf beliebige krumme Flächen zu übertragen ist: die Verallgemeinerung ist so zu treffen, dass wir auf die alten Unendlichkeitspuncte zurückkommen, wenn wir die Fläche und die stationären Strömungen auf ihr durch conforme Abbildung auf die Ebene übertragen.—In dieser Beschränkung hinsichtlich der Art der Unendlichkeitspuncte liegt auch, wie ich hier nicht ausführen kann, dass nur eine endliche Zahl von Unendlichkeitspuncten bei unseren Strömungen möglich ist. Desgleichen folgt aus unseren Prämissen, wie beiläufig hervorgehoben sei, dass von Kreuzungspuncten bei unseren Strömungen jedenfalls auch nur eine endliche Zahl auftritt.

14 Ueber die Periodicität des imaginären Theil’s der Function soll hiermit keinerlei Verfügung getroffen sein. In der That ist v bei gegebenem u durch die Differentialgleichungen (1) der pag. 1 bis auf eine additive Constante vollständig bestimmt und es unterliegen also die Periodicitätsmoduln, welche v an den Querschnitten [formula], [formula] besitzen mag, keinerlei willkürlicher Festsetzung.

15 Einen anderen Beweis siehe bei C. Jordan: Des contours tracés sur les surfaces, in Liouville’s Journal, ser. 2, Bd. 11 (1866).

16 Wegen dieses Satzes siehe Beltrami, 1. c. p. 354.

17 Ich will übrigens daran erinnern, dass man auch den Green’schen Satz anschauungsmässig begründen kann. Vgl. Tait, On Green’s and allied other theorems, Edinburgh Transactions, 1869—70, p. 69 ff.

18 Eine solche Orientirung ist vermuthlich auch für den praktischen Physiker von hohem Werthe.

19 Derartige Zeichnungen gab ich bereits in dem Aufsatze: Ueber den Verlauf der Abel’schen Integrale bei den Curven vierten Grades, Mathematische Annalen, Bd. X. Allerdings haben die Riemann’schen Flächen daselbst eine etwas andere Bedeutung, so dass bei ihnen nur in übertragenem Sinne von einer Flüssigkeitsbewegung die Rede sein kann; vergl. die Erläuterungen, welche darüber in §. 17 des Nachfolgenden gegeben werden.

20 Zu einem solchen Beweise scheint vor allen Dingen nothwendig, sich über die verschiedenen Möglichkeiten klar zu werden, die betreffs der Ueberführung einer gegebenen Fläche in die Normalfläche des §. 8 vorliegen.

21 Sind sie es nicht, so ist die nächste Folge, dass die Zahl der in m Puncten unendlich werdenden eindeutigen Functionen grösser wird als die im Texte angegebene. Man kennt die Untersuchungen, welche zumal Roch über diese Möglichkeit angestellt hat (Borchardt’s Journal Bd. 64; vergl. auch, was die algebraische Formulirung betrifft: Brill und Nöther, über die algebraischen Functionen und ihre Verwendung in der Geometrie, Mathematische Annalen, Bd. 7). Ich kann diesen Untersuchungen im Texte nicht folgen, obgleich sie sich mit Leichtigkeit an die Darstellung des Abel’schen Theorems anschliessen lassen, wie sie Riemann in Nr. 14 der Abel’schen Functionen giebt,—und will nur, mit Rücksicht auf spätere Entwickelungen des Textes (cf. §. 19), darauf hinweisen, dass eine lineare Abhängigkeit zwischen den [formula]_ Gleichungen jedenfalls nicht eintritt, wenn __m__ die Gränse [formula] überschreitet._

22 Ich spreche im Folgenden durchweg von der Ebene, statt von der
Kugel, um mich möglichst an die gewöhnliche Auffassungsweise
anzuschliessen.

23 Man vergleiche hierzu, was Riemann in Nr. 12 seiner Abel’schen
Functionen über die Abbildung durch überall endliche Functionen
sagt.

24 Wir haben oben (§. 11) ohne ausgeführten Beweis angegeben, dass die Zahl der Kreuzungspuncte von [formula] beträgt. Wie man jetzt sieht, ist diese Behauptung eine einfache Umsetzung der bekannten Relation, welche die Zahl der Verzweigungspuncte (oder vielmehr die Gesammtmultiplicität derselben) mit der Blätterzahl m und dem p einer mehrblättrigen Fläche verknüpft [unter p die Maximahlzahl der Rückkehrschnitte verstanden, die man auf dieser mehrblättrigen Fläche ziehen kann, ohne sie zu zerstücken].

25 Wegen der expliciten Formulirung dieser Relationen vergleiche man die gewöhnlichen Lehrbücher, sodann insbesondere die Schrift von C. Neumann: Das Dirichlet’sche Princip in seiner Anwendung auf die Riemann’schen Flächen, Leipzig 1865.

26 Es entsteht hier die interessante Frage, ob es immer möglich ist, mehrblättrige Flächen mit beliebigen Verzweigungspuncten conform in solche zu verwandeln, die durchaus keine singuläre Stelle besitzen Diese Frage greift über die im Texte zu behandelnden Gegenstände hinaus, aber ich habe sie immerhin anführen wollen. Gelingt es im einzelnen Falle nicht, so haben die vorgängigen Betrachtungen des Textes doch noch die Bedeutung, dass sie am einfachsten Beispiele die allgemeinen Ideen haben entstehen lassen und dadurch die Behandlung auch der complicirteren Vorkommnisse ermöglicht haben.

27 Vergl. Kirchhoff; Monatsberichte der Berliner Akademie von 1875, l.
c. (wo übrigens explicite nur die Beziehung zwischen Ringfläche und
ebenem Rechtecke besprochen wird).

28 Diese geometrische Umsetzung ist natürlich keineswegs nothwendig;
wir erreichen durch dieselbe nur den Anschluss an die gewöhnlich
eingehaltene Darstellungsweise.

29 Im Besonderen kann diess anders sein. Wenn man w und z als Parallel-Coordinaten, die zwischen ihnen bestehende Gleichung durch eine Curve deutet, so sind es, wie man weiss, die Doppelpuncte dieser Curve, welche jenen besonderen Vorkommnissen entsprechen.

30 Vergl. die eingehende Beweisführung bei Prym, Borchardt’s Journal, Bd. 83, p. 251 ff.: Beweis eines Riemann’schen Satzes.

31 Vergl. die betreffenden Bemerkungen der Vorrede.

32 Vergl. meine Arbeiten über elliptische Modulfunctionen in den Bänden 14, 15, 17 der mathematischen Annalen.

33 Man sehe insbesondere die dem 14. Annalenbande beigegebene Tafel ("Zur Transformation siebenter Ordnung der elliptischen Functionen’’) sowie die später noch zu nennende Arbeit von Dyck im 17. Bande daselbst.

34 "Ueber eine neue Art von Riemann’schen Flächen’’, mathematische Annalen Bd. 7 und 10.

35 Siehe: Harnack (Ueber die Verwerthung der elliptischen Functionen für die Geometrie der Curven dritten Grades) im 9. Bande der mathematischen Annalen, siehe ferner meinen schon oben genannten Aufsatz: "Ueber den Verlauf der Abel’schen Integrale bei den Curven vierten Grades’’ im 10. Bande daselbst.

36 Solche Bestimmungen machte z. B. Hr. Kasten in seiner Inauguraldissertation: Zur Theorie der dreiblättrigen Riemann’schen Fläche. Bremen 1876.

37 Wenn es hier wieder gestattet ist auf eigene Arbeiten zu verweisen, so geschehe diess zunächst mit Bezug auf eine Stelle im 12. Bande der mathematischen Annalen (p. 173), wo der Schluss begründet wird, dass gewisse rationale Functionen durch die Zahl ihrer Verzweigungen völlig bestimmt sind, sodann in Bezug auf Bd. 15, p. 533 ebenda, wo eine ausführliche Betrachtung lehrt, dass es zehn rationale Functionen elften Grades gibt, die gewisse Verzweigungsstellen besitzen.

38 Es folgt diese z. B. aus den Sätzen von Lüroth und Clebsch, die man
in den Bänden 4 und 6 der mathematischen Annalen abgeleitet findet.

39 Ich führe dieses Resultat, welches aus der Theorie der elliptischen
Functionen wohlbekannt ist, im Texte ohne Beweis an.

40 Es ist bei diesem Satze an eine continuirliche Schaar von Transformationen, also an Transformationen mit willkürlich veränderlichen Parametern gedacht. Ob eine Fläche [formula] unter Umständen nicht durch unendlich viele discrete Transformationen in sich übergehen kann, bleibt im Texte unerörtert; doch scheint diess bei endlichem p in der That auch unmöglich.

41 Vergl. die Darstellung im 14. Bande der mathematischen Annalen, p. 112 ff.

42 Die im Texte aufzustellenden Sätze finden sich explicite grösstentheils in der Literatur nicht vor. Wegen der Flächen [formula] vergleiche man den bereits citirten Aufsatz von Schwarz (Berliner Monatsberichte 1870). Man sehe ferner eine Arbeit von Schottky: Ueber die conforme Abbildung mehrfach zusammenhängender Flächen}, die als Berliner Inaugural-Dissertation 1875 erschien und später (1877) in umgearbeiteter Form in Borchardts Journal Bd. 83 abgedruckt wurde. Es handelt sich in derselben um solche p-fach zusammenhängende ebene Bereiche, welche von [formula] Randcurven begränzt werden.

43 Solchen Flächen entsprechen algebraische Gleichungen mit einer
Gruppe eindeutiger Transformationen in sich. Die Bemerkungen des
Textes zielen also auf solche Untersuchungen ab, wie sie in neuerer
Zeit von Hrn. Dyck verfolgt worden sind (cf. die bereits citirte
Arbeit im 17. Bande der Mathematischen Annalen: Aufstellung und
Untersuchung von Gruppe und Irrationalität regulärer Riemann’scher
Flächen).

44 Es gibt natürlich wieder Flächen, welche neben einer Anzahl von Transformationen erster Art eine gleiche Anzahl von Transformationen zweiter Art zulassen; dieselben entsprechen den regulär-symmetrischen Flächen der Dyck’schen Arbeit.

45 Vergl. Harnack: Ueber die Vieltheiligkeit der ebenen algebraischen Curven, in Bd. 10 der Mathematischen Annalen, p. 189 ff.; vergleiche ferner p. 415, 416 daselbst, wo ich die Eintheilung jener Curven in zweierlei Arten gegeben habe. Vielleicht ist es zweckmässig, bei diesen Untersuchungen die Lehre von den symmetrischen Flächen und die Riemann’sche Theorie, so wie beide hier im Texte dargestellt werden, geradezu als Ausgangspunct zu wählen.

46 Siehe zumal: Cayley, on the correspondence between homographies and rotations, Mathematische Annalen, Bd. 15, p. 238-240.

47 Ich verdanke diese Auffassung einer gelegentlichen Unterredung mit Hrn. Schwarz (Ostern 1881). Man vergl. p. 320 ff. der bereits genannten Arbeit von Schottky im 83. Bande von Borchardt’s Journal, sowie die Originaluntersuchungen von Schwarz über die Abbildung geschlossener Polyederflächen auf die Kugel (Berliner Monatsberichte 1865 p. 150 ff., Borchardt’s Journal Bd. 70, p. 121—136, Bd. 75, p. 330.)

48 Ich drücke mich im Texte der Kürze halber so aus, als wenn die ursprüngliche Fläche eine zweiseitige Fläche gewesen wäre, während doch nicht ausgeschlossen sein soll, dass sie eine Doppelfläche ist.