Andere Zahlen.
§ 92. Wir haben unsere Betrachtung bisher auf die Anzahlen beschränkt. Werfen wir nun noch einen Blick auf die andern Zahlengattungen und versuchen wir für dies weitere Feld nutzbar zu machen, was wir auf dem engern erkannt haben!
Um den Sinn der Frage nach der Möglichkeit einer gewissen Zahl klar zu machen, sagt Hankel[108]:
»Ein Ding, eine Substanz, die selbständig ausserhalb des denkenden Subjects und der sie veranlassenden Objecte existirte, ein selbständiges Princip, wie etwa bei den Pythagoräern, ist die Zahl heute nicht mehr. Die Frage von der Existenz kann daher nur auf das denkende Subject oder die gedachten Objecte, deren Beziehungen die Zahlen darstellen, bezogen werden. Als unmöglich gilt dem Mathematiker streng genommen nur das, was logisch unmöglich ist, d. h. sich selbst widerspricht. Dass in diesem Sinne unmögliche Zahlen nicht zugelassen werden können, bedarf keines Beweises. Sind aber die betreffenden Zahlen logisch möglich, ihr Begriff klar und bestimmt definirt und also ohne Widerspruch, so kann jene Frage nur darauf hinauskommen, ob es im Gebiete des Realen oder des in der Anschauung Wirklichen, des Actuellen ein Substrat derselben, ob es Objecte gebe, an welchen die Zahlen, also die intellectuellen Beziehungen der bestimmten Art zur Erscheinung kommen«.
§ 93. Bei dem ersten Satze kann man zweifeln, ob nach Hankel die Zahlen in dem denkenden Subjecte oder in den sie veranlassenden Objecten oder in beiden existiren. Im räumlichen Sinne sind sie jedenfalls weder innerhalb noch ausserhalb weder des Subjects noch eines Objects. Wohl aber sind sie in dem Sinne ausserhalb des Subjects, dass sie nicht subjectiv sind. Während jeder nur seinen Schmerz, seine Lust, seinen Hunger fühlen, seine Ton- und Farbenempfindungen haben kann, können die Zahlen gemeinsame Gegenstände für Viele sein, und zwar sind sie für Alle genau dieselben, nicht nur mehr oder minder ähnliche innere Zustände von Verschiedenen. Wenn Hankel die Frage von der Existenz auf das denkende Subject beziehen will, so scheint er sie damit zu einer psychologischen zu machen, was sie in keiner Weise ist. Die Mathematik beschäftigt sich nicht mit der Natur unserer Seele, und wie irgendwelche psychologische Fragen beantwortet werden, muss für sie völlig gleichgiltig sein.
§ 94. Auch dass dem Mathematiker nur, was sich selbst widerspricht, als unmöglich gelte, muss beanstandet werden. Ein Begriff ist zulässig, auch wenn seine Merkmale einen Widerspruch enthalten; man darf nur nicht voraussetzen, dass etwas unter ihn falle. Aber daraus, dass der Begriff keinen Widerspruch enthält, kann noch nicht geschlossen werden, dass etwas unter ihn falle. Wie soll man übrigens beweisen, dass ein Begriff keinen Widerspruch enthalte? Auf der Hand liegt das keineswegs immer; daraus, dass man keinen Widerspruch sieht, folgt nicht, dass keiner da ist, und die Bestimmtheit der Definition leistet keine Gewähr dafür. Hankel beweist[109], dass ein höheres begrenztes complexes Zahlensystem als das gemeine, das allen Gesetzen der Addition und Multiplication unterworfen wäre, einen Widerspruch enthält. Das muss eben bewiesen werden; man sieht es nicht sogleich. Bevor dies geschehen, könnte immerhin jemand unter Benutzung eines solchen Zahlensystems zu wunderbaren Ergebnissen gelangen, deren Begründung nicht schlechter wäre, als die, welche Hankel[110] von den Determinantensätzen mittels der alternirenden Zahlen giebt; denn wer bürgt dafür, dass nicht auch in deren Begriffe ein versteckter Widerspruch enthalten ist? Und selbst, wenn man einen solchen allgemein für beliebig viele alternirende Einheiten ausschliessen könnte, würde immer noch nicht folgen, dass es solche Einheiten gebe. Und grade dies brauchen wir. Nehmen wir als Beispiel den 18. Satz des 1. Buches von Euklids Elementen:
In jedem Dreiecke liegt der grössern Seite der grössere Winkel gegenüber.
Um das zu beweisen, trägt Euklid auf der grössern Seite AC ein Stück AD gleich der kleinern Seite AB ab und beruft sich dabei auf eine frühere Construction. Der Beweis würde in sich zusammenfallen, wenn es einen solchen Punkt nicht gäbe, und es genügt nicht, dass man in dem Begriffe »Punkt auf AC, dessen Entfernung von A gleich B ist« keinen Widerspruch entdeckt. Es wird nun B mit D verbunden. Auch dass es eine solche Gerade giebt, ist ein Satz, auf den sich der Beweis stützt.
§ 95. Streng kann die Widerspruchslosigkeit eines Begriffes wohl nur durch den Nachweis dargelegt werden, dass etwas unter ihn falle. Das Umgekehrte würde ein Fehler sein. In diesen verfällt Hankel, wenn er in Bezug auf die Gleichung x + b = c sagt[111]:
»Es liegt auf der Hand, dass es, wenn b > c ist, keine Zahl x in der Reihe 1, 2, 3, … giebt, welche die betreffende Aufgabe löst: die Subtraction ist dann unmöglich. Nichts hindert uns jedoch, dass wir in diesem Falle die Differenz (c − b) als ein Zeichen ansehen, welches die Aufgabe löst, und mit welchem genau so zu operiren ist, als wenn es eine numerische Zahl aus der Reihe 1, 2, 3, … wäre.«
Uns hindert allerdings etwas (2 − 3), ohne Weiteres als Zeichen anzusehen, welches die Aufgabe löst; denn ein leeres Zeichen löst eben die Aufgabe nicht; ohne einen Inhalt ist es nur Tinte oder Druckerschwärze auf Papier, hat als solche physikalische Eigenschaften, aber nicht die, um 3 vermehrt 2 zu geben. Es wäre eigentlich gar kein Zeichen, und sein Gebrauch als solches wäre ein logischer Fehler. Auch in dem Falle, wo c > b, ist nicht das Zeichen (»c − b«) die Lösung der Aufgabe, sondern dessen Inhalt.
§ 96. Ebensogut könnte man sagen: unter den bisher bekannten Zahlen giebt es keine, welche die beiden Gleichungen
x + 1 = 2 und x + 2 = 1
zugleich befriedigt; aber nichts hindert uns ein Zeichen einzuführen, das die Aufgabe löst. Man wird sagen: die Aufgabe enthält ja einen Widerspruch. Freilich, wenn man als Lösung eine reelle oder gemeine complexe Zahl verlangt; aber erweitern wir doch unser Zahlsystem, schaffen wir doch Zahlen, die den Anforderungen genügen! Warten wir ab, ob uns jemand einen Widerspruch nachweist! Wer kann wissen, was bei diesen neuen Zahlen möglich ist? Die Eindeutigkeit der Subtraction werden wir dann freilich nicht aufrecht erhalten können; aber wir müssen ja auch die Eindeutigkeit des Wurzelziehens aufgeben, wenn wir die negativen Zahlen einführen wollen; durch die complexen Zahlen wird das Logarithmiren vieldeutig.
Schaffen wir auch Zahlen, welche divergirende Reihen zu summiren gestatten! Nein! auch der Mathematiker kann nicht beliebig etwas schaffen, so wenig wie der Geograph; auch er kann nur entdecken, was da ist, und es benennen.
An diesem Irrthum krankt die formale Theorie der Brüche, der negativen, der complexen Zahlen[112]. Man stellt die Forderung, dass die bekannten Rechnungsregeln für die neu einzuführenden Zahlen möglichst erhalten bleiben, und leitet daraus allgemeine Eigenschaften und Beziehungen ab. Stösst man nirgends auf einen Widerspruch, so hält man die Einführung der neuen Zahlen für gerechtfertigt, als ob ein Widerspruch nicht dennoch irgendwo versteckt sein könnte, und als ob Widerspruchslosigkeit schon Existenz wäre.
§ 97. Dass dieser Fehler so leicht begangen wird, liegt wohl an einer mangelhaften Unterscheidung der Begriffe von den Gegenständen. Nichts hindert uns, den Begriff »Quadratwurzel aus -1« zu gebrauchen; aber wir sind nicht ohne Weiteres berechtigt, den bestimmten Artikel davor zu setzen und den Ausdruck »die Quadratwurzel aus -1« als einen sinnvollen anzusehen. Wir können unter der Voraussetzung, dass i² = -1 sei, die Formel beweisen, durch welche der Sinus eines Vielfachen des Winkels α durch Sinus und Cosinus von α selbst ausgedrückt wird; aber wir dürfen nicht vergessen, dass der Satz dann die Bedingung i² = -1 mit sich führt, welche wir nicht ohne Weiteres weglassen dürfen. Gäbe es gar nichts, dessen Quadrat -1 wäre, so brauchte die Gleichung kraft unseres Beweises nicht richtig zu sein[113], weil die Bedingung i² = -1 niemals erfüllt wäre, von der ihre Geltung abhängig erscheint. Es wäre so, als ob wir in einem geometrischen Beweise eine Hilfslinie benutzt hätten, die gar nicht gezogen werden kann.
§ 98. Hankel[114] führt zwei Arten von Operationen ein, die er lytische und thetische nennt, und die er durch gewisse Eigenschaften bestimmt, welche diese Operationen haben sollen. Dagegen ist nichts zu sagen, so lange man nur nicht voraussetzt, dass es solche Operationen und Gegenstände giebt, welche deren Ergebnisse sein können[115]. Später[116] bezeichnet er eine thetische, vollkommen eindeutige, associative Operation durch (a + b) und die entsprechende ebenfalls vollkommen eindeutige lytische durch (a − b). Eine solche Operation? welche? eine beliebige? dann ist dies keine Definition von (a + b); und wenn es nun keine giebt? Wenn das Wort »Addition« noch keine Bedeutung hätte, wäre es logisch zulässig zu sagen: eine solche Operation wollen wir eine Addition nennen; aber man darf nicht sagen: eine solche Operation soll die Addition heissen und durch (a + b) bezeichnet werden, bevor es feststeht, dass es eine und nur eine einzige giebt. Man darf nicht auf der einen Seite einer Definitionsgleichung den unbestimmten und auf der andern den bestimmten Artikel gebrauchen. Dann sagt Hankel ohne Weiteres: »der Modul der Operation«, ohne bewiesen zu haben, dass es einen und nur einen giebt.
§ 99. Kurz diese rein formale Theorie ist unzureichend. Das Werthvolle an ihr ist nur dies. Man beweist, dass wenn Operationen gewisse Eigenschaften wie die Associativität und die Commutativität haben, gewisse Sätze von ihnen gelten. Man zeigt nun, dass die Addition und Multiplication, welche man schon kennt, diese Eigenschaften haben, und kann nun sofort jene Sätze von ihnen aussprechen, ohne den Beweis in jedem einzelnen Falle weitläufig zu wiederholen. Erst durch diese Anwendung auf anderweitig gegebene Operationen, gelangt man zu den bekannten Sätzen der Arithmetik. Keineswegs darf man aber glauben die Addition und die Multiplication auf diesem Wege einführen zu können. Man giebt nur eine Anleitung für die Definitionen, nicht diese selbst. Man sagt: der Name »Addition« soll nur einer thetischen, vollkommen eindeutigen, associativen Operation gegeben werden, womit diejenige, welche nun so heissen soll, noch gar nicht angegeben ist. Danach stände nichts im Wege, die Multiplication Addition zu nennen und durch (a + b) zu bezeichnen, und niemand könnte mit Bestimmtheit sagen, ob 2 + 3 5 oder 6 wäre.
§ 100. Wenn wir diese rein formale Betrachtungsweise aufgeben, so kann sich aus dem Umstande, dass gleichzeitig mit der Einführung von neuen Zahlen die Bedeutung der Wörter »Summe« und »Product« erweitert wird, ein Weg darzubieten scheinen. Man nimmt einen Gegenstand, etwa den Mond, und erklärt: der Mond mit sich selbst multiplicirt sei -1. Dann haben wir in dem Monde eine Quadratwurzel aus -1. Diese Erklärung scheint gestattet, weil aus der bisherigen Bedeutung der Multiplication der Sinn eines Solchen Products noch gar nicht hervorgeht und also bei der Erweiterung dieser Bedeutung beliebig festgesetzt werden kann. Aber wir brauchen auch die Producte einer reellen Zahl mit der Quadratwurzel aus -1. Wählen wir deshalb lieber den Zeitraum einer Secunde zu einer Quadratwurzel aus -1 und bezeichnen ihn durch i! Dann werden wir unter 3 i den Zeitraum von 3 Secunden verstehen u. s. w.[117] Welchen Gegenstand werden wir dann etwa durch 2 + 3i bezeichnen? Welche Bedeutung würde dem Pluszeichen in diesem Falle zu geben sein? Nun das muss allgemein festgesetzt werden, was freilich nicht leicht sein wird. Doch nehmen wir einmal an, dass wir allen Zeichen von der Form a + bi einen Sinn gesichert hätten, und zwar einen solchen, dass die bekannten Additionssätze gelten! Dann müssten wir ferner festsetzen, dass allgemein
(a + bi) (c + di) = ac − bd + i (ad + bc)
sein solle, wodurch wir die Multiplication weiter bestimmen würden.
§ 101. Nun könnten wir die Formel für cos (nα) beweisen, wenn wir wüssten, dass aus der Gleichheit complexer Zahlen die Gleichheit der reellen Theile folgt. Das müsste aus dem Sinne von a + bi hervorgehn, den wir hier als vorhanden angenommen haben. Der Beweis würde nur für den Sinn der complexen Zahlen, ihrer Summen und Producte gelten, den wir festgesetzt haben. Da nun für ganzes reelles n und reelles α i gar nicht mehr in der Gleichung vorkommt, so ist man versucht zu schliessen: also ist es ganz gleichgiltig, ob i eine Secunde, ein Millimeter oder was sonst bedeutet, wenn nur unsere Additions- und Multiplicationssätze gelten; auf die allein kommt es an; um das Uebrige brauchen wir uns nicht zu kümmern. Vielleicht kann man die Bedeutung von a + bi, von Summe und Product in verschiedener Weise so festsetzen, dass jene Sätze bestehen bleiben; aber es ist nicht gleichgiltig, ob man überhaupt einen solchen Sinn für diese Ausdrücke finden kann.
§ 102. Man thut oft so, als ob die blosse Forderung schon ihre Erfüllung wäre. Man fordert, dass die Subtraction[118], die Division, die Radicirung immer ausführbar seien, und glaubt damit genug gethan zu haben. Warum fordert man nicht auch, dass durch beliebige drei Punkte eine Gerade gezogen werde? Warum fordert man nicht, dass für ein dreidimensionales complexes Zahlensystem sämmtliche Additions- und Multiplicationssätze gelten wie für ein reelles? Weil diese Forderung einen Widerspruch enthält. Ei so beweise man denn erst, dass jene andern Forderungen keinen Widerspruch enthalten! Ehe man das gethan hat, ist alle vielerstrebte Strenge nichts als eitel Schein und Dunst.
In einem geometrischen Lehrsatze kommt die zum Beweise etwa gezogene Hilfslinie nicht vor. Vielleicht sind mehre möglich z. B., wenn man einen Punkt willkührlich wählen kann. Aber wie entbehrlich auch jede einzelne sein mag, so hängt doch die Beweiskraft daran, dass man eine Linie von der verlangten Beschaffenheit ziehen könne. Die blosse Forderung genügt nicht. So ist es auch in unserm Falle für die Beweiskraft nicht gleichgiltig, ob »a + bi« einen Sinn hat oder blosse Druckerschwärze ist. Es reicht dazu nicht hin, zu verlangen, es solle einen Sinn haben, oder zu sagen, der Sinn sei die Summe von a und bi, wenn man nicht vorher erklärt hat, was »Summe« in diesem Falle bedeutet, und wenn man den Gebrauch des bestimmten Artikels nicht gerechtfertigt hat.
§ 103. Gegen die von uns versuchte Festsetzung des Sinnes von »i« lässt sich freilich Manches einwenden. Wir bringen dadurch etwas ganz Fremdartiges, die Zeit, in die Arithmetik. Die Secunde steht in gar keiner innern Beziehung zu den reellen Zahlen. Die Sätze, welche mittels der complexen Zahlen bewiesen werden, würden Urtheile a posteriori oder doch synthetische sein, wenn es keine andere Art des Beweises gäbe, oder wenn man für i keinen andern Sinn finden könnte. Zunächst muss jedenfalls der Versuch gemacht werden, alle Sätze der Arithmetik als analytische nachzuweisen.
Wenn Kossak[119] in Bezug auf die complexe Zahl sagt:
»Sie ist die zusammengesetzte Vorstellung von verschiedenartigen Gruppen unter einander gleicher Elemente[120]«, so scheint er damit die Einmischung von Fremdartigem vermieden zu haben; aber er scheint es auch nur infolge der Unbestimmtheit des Ausdrucks. Man erhält gar keine Antwort darauf, was 1 + i eigentlich bedeute: die Vorstellung eines Apfels und einer Birne oder die von Zahnweh und Podagra? Beide zugleich kann es doch nicht bedeuten, weil dann 1 + i nicht immer gleich 1 + i wäre. Man wird sagen: das kommt auf die besondere Festsetzung an. Nun, dann haben wir auch in Kossak's Satze noch gar keine Definition der complexen Zahl, sondern nur eine allgemeine Anleitung dazu. Wir brauchen aber mehr; wir müssen bestimmt wissen, was »i« bedeutet, und wenn wir nun jener Anleitung folgend sagen wollten: die Vorstellung einer Birne, so würden wir wieder etwas Fremdartiges in die Arithmetik einführen.
Das, was man die geometrische Darstellung complexer Zahlen zu nennen pflegt, hat wenigstens den Vorzug vor den bisher betrachteten Versuchen, dass dabei 1 und i nicht ganz ohne Zusammenhang und ungleichartig erscheinen sondern dass die Strecke, welche man als Darstellung von i betrachtet, in einer gesetzmässigen Beziehung zu der Strecke steht, durch welche 1 dargestellt wird. Uebrigens ist es genau genommen nicht richtig, dass hierbei 1 eine gewisse Strecke, i eine zu ihr senkrechte von gleicher Länge bedeute, sondern »1« bedeutet überall dasselbe. Eine complexe Zahl giebt hier an, wie die Strecke, welche als ihre Darstellung gilt, aus einer gegebenen Strecke (Einheitsstrecke) durch Vervielfältigung, Theilung und Drehung[121] hervorgeht. Aber auch hiernach erscheint jeder Lehrsatz, dessen Beweis sich auf die Existenz einer complexen Zahl stützen muss, von der geometrischen Anschauung abhängig und also synthetisch.
§ 104. Wodurch sollen uns denn nun die Brüche, die Irrationalzahlen und die complexen Zahlen gegeben werden? Wenn wir die Anschauung zu Hilfe nehmen, so führen wir etwas Fremdartiges in die Arithmetik ein; wenn wir aber nur den Begriff einer solchen Zahl durch Merkmale bestimmen, wenn wir nur verlangen, dass die Zahl gewisse Eigenschaften habe, so bürgt nichts dafür, dass auch etwas unter den Begriff falle und unsern Anforderungen entspreche, und doch müssen sich grade hierauf Beweise stützen.
Nun, wie ist es denn bei der Anzahl? Dürfen wir wirklich von 1000 (10001000) nicht reden, bevor uns nicht soviele Gegenstände in der Anschauung gegeben sind? Ist es so lange ein leeres Zeichen? Nein! es hat einen ganz bestimmten Sinn, obwohl es psychologisch schon in Anbetracht der Kürze unseres Lebens unmöglich ist, uns soviele Gegenstände vor das Bewusstsein zu führen[122]; aber trotzdem ist 1000 (10001000) ein Gegenstand, dessen Eigenschaften wir erkennen können, obgleich er nicht anschaulich ist. Man überzeugt sich davon, indem man bei der Einführung des Zeichens an für die Potenz zeigt, dass immer eine und nur eine positive ganze Zahl dadurch ausgedrückt wird, wenn a und n positive ganze Zahlen sind. Wie dies geschehen kann, würde hier zu weit führen, im Einzelnen darzulegen. Die Weise, wie wir im § 74 die Null, in § 77 die Eins, in § 84 die unendliche Anzahl ∞₁ erklärt haben, und die Andeutung des Beweises, dass auf jede endliche Anzahl in der natürlichen Zahlenreihe eine Anzahl unmittelbar folgt (§§ 82 u. 83), werden den Weg im Allgemeinen erkennen lassen.
Es wird zuletzt auch bei der Definition der Brüche, complexen Zahlen u. s. w. Alles darauf ankommen, einen beurtheilbaren Inhalt aufzusuchen, der in eine Gleichung verwandelt werden kann, deren Seiten dann eben die neuen Zahlen sind. Mit andern Worten: wir müssen den Sinn eines Wiedererkennungsurtheils für solche Zahlen festsetzen. Dabei sind die Bedenken zu beachten, die wir (§§ 63–68) in Betreff einer solchen Umwandlung erörtert haben. Wenn wir ebenso wie dort verfahren, so werden uns die neuen Zahlen als Umfänge von Begriffen gegeben.
§ 105. Aus dieser Auffassung der Zahlen[123] erklärt sich, wie mir scheint, leicht der Reiz, den die Beschäftigung mit der Arithmetik und Analysis ausübt. Man könnte wohl mit Abänderung eines bekannten Satzes sagen: der eigentliche Gegenstand der Vernunft ist die Vernunft. Wir beschäftigen uns in der Arithmetik mit Gegenständen, die uns nicht als etwas Fremdes von aussen durch Vermittelung der Sinne bekannt werden, sondern die unmittelbar der Vernunft gegeben sind, welche sie als ihr Eigenstes völlig durchschauen kann[124].
Und doch, oder vielmehr grade daher sind diese Gegenstände nicht subjective Hirngespinnste. Es giebt nichts Objectiveres als die arithmetischen Gesetze.
§ 106. Werfen wir noch einen kurzen Rückblick auf den Gang unserer Untersuchung! Nachdem wir festgestellt hatten, dass die Zahl weder ein Haufe von Dingen noch eine Eigenschaft eines solchen, dass sie aber auch nicht subjectives Erzeugniss seelischer Vorgänge ist; sondern dass die Zahlangabe von einem Begriffe etwas Objectives aussage, versuchten wir zunächst die einzelnen Zahlen 0, 1 u. s. w. und das Fortschreiten in der Zahlenreihe zu definiren. Der erste Versuch misslang, weil wir nur jene Aussage von Begriffen, nicht aber die 0, die 1 abgesondert definirt hatten, welche nur Theile von ihr sind. Dies hatte zur Folge, dass wir die Gleichheit von Zahlen nicht beweisen konnten. Es zeigte sich, dass die Zahl, mit der sich die Arithmetik beschäftigt, nicht als ein unselbständiges Attribut, sondern substantivisch gefasst werden muss[125]. Die Zahl erschien so als wiedererkennbarer Gegenstand, wenn auch nicht als physikalischer oder auch nur räumlicher noch als einer, von dem wir uns durch die Einbildungskraft ein Bild entwerfen können. Wir stellten nun den Grundsatz auf, dass die Bedeutung eines Wortes nicht vereinzelt, sondern im Zusammenhange eines Satzes zu erklären sei, durch dessen Befolgung allein, wie ich glaube, die physikalische Auffassung der Zahl vermieden werden kann, ohne in die psychologische zu verfallen. Es giebt nun eine Art von Sätzen, die für jeden Gegenstand einen Sinn haben müssen, das sind die Wiedererkennungsätze, bei den Zahlen Gleichungen genannt. Auch die Zahlangabe, sahen wir, ist als eine Gleichung aufzufassen. Es kam also darauf an, den Sinn einer Zahlengleichung festzustellen, ihn auszudrücken, ohne von den Zahlwörtern oder dem Worte »Zahl« Gebrauch zu machen. Die Möglichkeit die unter einen Begriff F fallenden Gegenstände, den unter einen Begriff G fallenden beiderseits eindeutig zuzuordnen, erkannten wir als Inhalt eines Wiedererkennungsurtheils von Zahlen. Unsere Definition musste also jene Möglichkeit als gleichbedeutend mit einer Zahlengleichung hinstellen. Wir erinnerten an ähnliche Fälle: die Definition der Richtung aus dem Parallelismus, der Gestalt aus der Aehnlichkeit u. s. w.
§ 107. Es erhob sich nun die Frage: wann ist man berechtigt, einen Inhalt als den eines Wiedererkennungsurtheils aufzufassen? Es muss dazu die Bedingung erfüllt sein, dass in jedem Urtheile unbeschadet seiner Wahrheit die linke Seite der versuchsweise angenommenen Gleichung durch die rechte ersetzt werden könne. Nun ist uns, ohne dass weitere Definitionen hinzukommen, zunächst von der linken oder rechten Seite einer solchen Gleichung keine Aussage weiter bekannt als eben die der Gleichheit. Es brauchte also die Ersetzbarkeit nur in einer Gleichung nachgewiesen zu werden.
Aber es blieb noch ein Bedenken bestehen. Ein Wiedererkennungssatz muss nämlich immer einen Sinn haben. Wenn wir nun die Möglichkeit, die unter den Begriff F fallenden Gegenstände den unter den Begriff G fallenden beiderseits eindeutig zuzuordnen, als eine Gleichung auffassen, indem wir dafür sagen: »die Anzahl, welche dem Begriffe F zukommt, ist gleich der Anzahl, welche dem Begriffe G zukommt,« und hiermit den Ausdruck »die Anzahl, welche dem Begriffe F zukommt« einführen, so haben wir für die Gleichung nur dann einen Sinn, wenn beide Seiten die eben genannte Form haben. Wir könnten nach einer solchen Definition nicht beurtheilen, ob eine Gleichung wahr oder falsch ist, wenn nur die eine Seite diese Form hat. Das veranlasste uns zu der Definition:
Die Anzahl, welche dem Begriffe F zukommt, ist der Umfang des Begriffes »Begriff gleichzahlig dem Begriffe F«, indem wir einen Begriff F gleichzahlig einem Begriffe G nannten, wenn jene Möglichkeit der beiderseits eindeutigen Zuordnung besteht.
Hierbei setzten wir den Sinn des Ausdruckes »Umfang des Begriffes« als bekannt voraus. Diese Weise, die Schwierigkeit zu überwinden, wird wohl nicht überall Beifall finden, und Manche werden vorziehn, jenes Bedenken in andrer Weise zu beseitigen. Ich lege auch auf die Heranziehung des Umfangs eines Begriffes kein entscheidendes Gewicht.
§ 108. Es blieb nun noch übrig die beiderseits eindeutige Zuordnung zu erklären; wir führten sie auf rein logische Verhältnisse zurück. Nachdem wir nun den Beweis des Satzes angedeutet hatten: die Zahl, welche dem Begriffe F zukommt, ist gleich der, welche dem Begriffe G zukommt, wenn der Begriff F dem Begriffe G gleichzahlig ist, definirten wir die 0, den Ausdruck »n folgt in der natürlichen Zahlenreihe unmittelbar auf m« und die Zahl 1 und zeigten, dass 1 in der natürlichen Zahlenreihe unmittelbar auf 0 folgt. Wir führten einige Sätze an, die sich an dieser Stelle leicht beweisen lassen, und gingen dann etwas näher auf folgenden ein, der die Unendlichkeit der Zahlenreihe erkennen lässt:
Auf jede Zahl folgt in der natürlichen Zahlenreihe eine Zahl.
Wir wurden hierdurch auf den Begriff »der mit n endenden natürlichen Zahlenreihe angehörend« geführt, von dem wir zeigen wollten, dass die ihm zukommende Anzahl auf n in der natürlichen Zahlenreihe unmittelbar folge. Wir definirten ihn zunächst mittels des Folgens eines Gegenstandes y auf einen Gegenstand x in einer allgemeinen φ-Reihe. Auch der Sinn dieses Ausdruckes wurde auf rein logische Verhältnisse zurückgeführt. Und dadurch gelang es, die Schlussweise von n auf (n + 1), welche gewöhnlich für eine eigenthümlich mathematische gehalten wird, als auf den allgemeinen logischen Schlussweisen beruhend nachzuweisen.
Wir brauchten nun zum Beweise der Unendlichkeit der Zahlenreihe den Satz, dass keine endliche Zahl in der natürlichen Zahlenreihe auf sich selber folgt. Wir kamen so zu den Begriffen der endlichen und der unendlichen Zahl. Wir zeigten, dass der letztere im Grunde nicht weniger logisch gerechtfertigt als der erstere ist. Zum Vergleiche wurden Cantors unendliche Anzahlen und dessen »Folgen in der Succession« herangezogen, wobei auf die Verschiedenheit im Ausdrucke hingewiesen wurde.
§ 109. Aus allem Vorangehenden ergab sich nun mit grosser Wahrscheinlichkeit die analytische und apriorische Natur der arithmetischen Wahrheiten; und wir gelangten zu einer Verbesserung der Ansicht Kants. Wir sahen ferner, was noch fehlt, um jene Wahrscheinlichkeit zur Gewissheit zu erheben, und gaben den Weg an, der dahin führen muss.
Endlich benutzten wir unsere Ergebnisse zur Kritik einer formalen Theorie der negativen, gebrochenen, irrationalen und complexen Zahlen, durch welche deren Unzulänglichkeit offenbar wurde. Ihren Fehler erkannten wir darin, dass sie die Widerspruchslosigkeit eines Begriffes als bewiesen annahm, wenn sich kein Widerspruch gezeigt hatte, und dass die Widerspruchslosigkeit eines Begriffes schon als hinreichende Gewähr für seine Erfülltheit galt. Diese Theorie bildet sich ein, sie brauche nur Forderungen zu stellen; deren Erfüllung verstehe sich dann von selbst. Sie gebärdet sich wie ein Gott, der durch sein blosses Wort schaffen kann, wessen er bedarf. Es musste auch gerügt werden, wenn eine Anweisung zur Definition für diese selbst ausgegeben wurde, eine Anweisung, deren Befolgung Fremdartiges in die Arithmetik einführen würde, obwohl sie selbst im Ausdrucke sich davon frei zu halten vermag, aber nur weil sie blosse Anweisung bleibt.
So geräth jene formale Theorie in Gefahr, auf das Aposteriorische oder doch Synthetische zurückzufallen, wie sehr sie sich auch den Anschein giebt, in der Höhe der Abstractionen zu schweben.
Unsere frühere Betrachtung der positiven ganzen Zahlen zeigte uns nun die Möglichkeit, die Einmischung von äussern Dingen und geometrischen Anschauungen zu vermeiden, ohne doch in den Fehler jener formalen Theorie zu verfallen. Es kommt wie dort darauf an, den Inhalt eines Wiedererkennungsurtheils festzusetzen. Denken wir dies überall geschehen, so erscheinen die negativen, gebrochenen, irrationalen und complexen Zahlen nicht geheimnissvoller als die positiven ganzen Zahlen, diese nicht reeller, wirklicher, greifbarer als jene.