Drückt das Zahlwort »Ein« eine Eigenschaft von Gegenständen aus?

§ 29. In den Definitionen, die Euklid am Anfange des 7. Buches der Elemente giebt, scheint er mit dem Worte »μονάς« bald einen zu zählenden Gegenstand, bald eine Eigenschaft eines solchen, bald die Zahl Eins zu bezeichnen. Ueberall kommt man mit der Uebersetzung »Einheit« durch, aber nur, weil dies Wort selbst in diesen verschiedenen Bedeutungen schillert.

Schröder[49] sagt: »Jedes der zu zählenden Dinge wird Einheit genannt.« Es fragt sich, weshalb man die Dinge erst unter den Begriff der Einheit bringt und nicht einfach erklärt: Zahl ist eine Menge von Dingen, womit wir wieder auf das Vorige zurückgeworfen wären. Man könnte zunächst in der Benennung der Dinge als Einheiten eine nähere Bestimmung finden wollen, indem man der sprachlichen Form folgend »Ein« als Eigenschaftswort ansieht und »Eine Stadt« so auffasst wie »weiser Mann«. Dann würde eine Einheit ein Gegenstand sein, dem die Eigenschaft »Ein« zukäme und würde sich zu »Ein« ähnlich verhalten wie »ein Weiser« zu dem Adjectiv »weise«. Zu den Gründen, die oben dagegen geltend gemacht sind, dass die Zahl eine Eigenschaft von Dingen sei, treten hier noch einige besondere hinzu. Auffallend wäre zunächst, dass jedes Ding diese Eigenschaft hätte. Es wäre unverständlich, weshalb man überhaupt noch einem Dinge ausdrücklich die Eigenschaft beilegt. Nur durch die Möglichkeit, dass etwas nicht weise sei, gewinnt die Behauptung, Solon sei weise, einen Sinn. Der Inhalt eines Begriffes nimmt ab, wenn sein Umfang zunimmt; wird dieser allumfassend, so muss der Inhalt ganz verloren gehen. Es ist nicht leicht zu denken, wie die Sprache dazu käme, ein Eigenschaftswort zu schaffen, das gar nicht dazu dienen könnte, einen Gegenstand näher zu bestimmen.

Wenn »Ein Mensch« ähnlich wie »weiser Mensch« aufzufassen wäre, so sollte man denken, dass »Ein« auch als Praedicat gebraucht werden könnte, sodass man wie »Solon war weise« auch sagen könnte »Solon war Ein« oder »Solon war Einer«. Wenn nun der letzte Ausdruck auch vorkommen kann, so ist er doch für sich allein nicht verständlich. Er kann z. B. heissen: Solon war ein Weiser, wenn »Weiser« aus dem Zusammenhange zu ergänzen ist. Aber allein scheint »Ein« nicht Praedicat sein zu können[50]. Noch deutlicher zeigt sich dies beim Plural. Während man »Solon war weise« und »Thales war weise« zusammenziehen kann in »Solon und Thales waren weise,« kann man nicht sagen »Solon und Thales waren Ein«. Hiervon wäre die Unmöglichkeit nicht einzusehen, wenn »Ein« sowie »weise« eine Eigenschaft sowohl des Solon als auch des Thales wäre.

§ 30. Damit hangt es zusammen, dass man keine Definition der Eigenschaft »Ein« hat geben können. Wenn Leibniz[51] sagt: »Eines ist, was wir durch Eine That des Verstandes zusammenfassen«, so erklärt er »Ein« durch sich selbst. Und können wir nicht auch Vieles durch Eine That des Verstandes zusammenfassen? Dies wird von Leibniz an derselben Stelle zugestanden. Aehnlich sagt Baumann[52]: »Eines ist, was wir als Eines auffassen« und weiter: »Was wir als Punkt setzen oder nicht mehr als getheilt setzen wollen, das sehen wir als Eines an; aber jedes Eins der äussern Anschauung, der reinen wie der empirischen, können wir auch als Vieles ansehen. Jede Vorstellung ist Eine, wenn abgegränzt gegen eine andere Vorstellung; aber in sich kann sie wieder in Vieles unterschieden werden.« So verwischt sich jede sachliche Begrenzung des Begriffes und alles hangt von unserer Auffassung ab. Wir fragen wieder: welchen Sinn kann es haben, irgendeinem Gegenstande die Eigenschaft »Ein« beizulegen, wenn je nach der Auffassung jeder Einer sein und auch nicht sein kann? Wie kann auf einem so verschwommenen Begriffe eine Wissenschaft beruhen, die grade in der grössten Bestimmtheit und Genauigkeit ihren Ruhm sucht?

§ 31. Obwohl nun Baumann[53] den Begriff der Eins auf innerer Anschauung beruhen lässt, so nennt er doch in der eben angeführten Stelle als Merkmale die Ungetheiltheit und die Abgegränztheit. Wenn diese zuträfen, so wäre zu erwarten, dass auch Thiere eine gewisse Vorstellung von Einheit haben könnten. Ob wohl ein Hund beim Anblick des Mondes eine wenn auch noch so unbestimmte Vorstellung von dem hat, was wir mit dem Worte »Ein« bezeichnen? Schwerlich! Und doch unterscheidet er gewiss einzelne Gegenstände: ein andrer Hund, sein Herr, ein Stein, mit dem er spielt, erscheinen ihm gewiss ebenso abgegrenzt, für sich bestehend, ungetheilt wie uns. Zwar wird er einen Unterschied merken, ob er sich gegen viele Hunde zu vertheidigen hat oder nur gegen Einen, aber dies ist der von Mill physikalisch genannte Unterschied. Es käme darauf besonders an, ob er von dem Gemeinsamen, welches wir durch das Wort »Ein« ausdrücken, ein wenn auch noch so dunkles Bewusstsein hat z. B. in den Fällen, wo er von Einem grössern Hunde gebissen wird, und wo er Eine Katze verfolgt. Das ist mir unwahrscheinlich. Ich folgere daraus, dass die Idee der Einheit nicht, wie Locke[54] meint, dem Verstande durch jenes Object draussen und jede Idee innen zugeführt, sondern von uns durch die höhern Geisteskräfte erkannt wird, die uns vom Thiere unterscheiden. Dann können solche Eigenschaften der Dinge wie Ungetheiltheit und Abgegrenztheit, die von den Thieren ebenso gut wie von uns bemerkt werden, nicht das Wesentliche an unserm Begriffe sein.

§ 32. Doch kann man einen gewissen Zusammenhang vermuthen. Darauf deutet die Sprache hin, indem sie von »Ein« »einig« ableitet. Etwas ist desto mehr geeignet, als besonderer Gegenstand aufgefasst zu werden, je mehr die Unterschiede in ihm gegenüber den Unterschieden von der Umgebung zurücktreten, je mehr der innere Zusammenhang den mit der Umgebung überwiegt. So bedeutet »einig« eine Eigenschaft, die dazu veranlasst, etwas in der Auffassung von der Umgebung abzusondern und für sich zu betrachten. Wenn das französische »uni« »eben,« »glatt« heisst, so ist dies so zu erklären. Auch das Wort »Einheit« wird in ähnlicher Weise gebraucht, wenn von politischer Einheit eines Landes, Einheit eines Kunstwerks gesprochen wird[55]. Aber in diesem Sinne gehört »Einheit« weniger zu »Ein« als zu »einig« oder »einheitlich.« Denn, wenn man sagt, die Erde habe Einen Mond, so will man diesen damit nicht für einen abgegrenzten, für sich bestehenden, ungetheilten Mond erklären; sondern man sagt dies im Gegensatze zu dem, was bei der Venus, dem Mars oder dem Jupiter vorkommt. In Bezug auf Abgegrenztheit und Ungetheiltheit könnten sich die Monde des Jupiter wohl mit unserm messen und sind in dem Sinne ebenso einheitlich.

§ 33. Die Ungetheiltheit wird von einigen Schriftstellern bis zur Untheilbarkeit gesteigert. G. Köpp[56] nennt jedes unzerlegbar und für sich bestehend gedachte sinnlich oder nicht sinnlich wahrnehmbare Ding ein Einzelnes und die zu zählenden Einzelnen Einse, wo offenbar »Eins« in dem Sinne von »Einheit« gebraucht wird. Indem Baumann seine Meinung, die äussern Dinge stellten keine strengen Einheiten dar, damit begründet, dass wir die Freiheit hätten, sie als Vieles zu betrachten, giebt auch er die Unzerlegbarkeit für ein Merkmal der strengen Einheit aus. Dadurch dass man den innern Zusammenhang bis zum Unbedingten steigert, will man offenbar ein Merkmal der Einheit gewinnen, das von der willkührlichen Auffassung unabhängig ist. Dieser Versuch scheitert daran, dass dann fast nichts übrig bliebe, was Einheit genannt und gezählt werden dürfte. Deshalb wird auch sofort der Rückzug damit angetreten, dass man nicht die Unzerlegbarkeit selbst, sondern das als unzerlegbar Gedachtwerden als Merkmal aufstellt. Damit ist man denn bei der schwankenden Auffassung wieder angekommen. Und wird denn dadurch etwas gewonnen, dass man sich die Sachen anders denkt als sie sind? Im Gegentheil! aus einer falschen Annahme können falsche Folgerungen fliessen. Wenn man aber aus der Unzerlegbarkeit nichts schliessen will, was nützt sie dann? wenn man von der Strenge des Begriffes ohne Schaden etwas ablassen kann, ja es sogar muss, wozu dann diese Strenge? Aber vielleicht soll man an die Zerlegbarkeit nur nicht denken. Als ob durch Mangel an Denken etwas erreicht werden könnte! Es giebt aber Fälle, wo man gar nicht vermeiden kann, an die Zerlegbarkeit zu denken, wo sogar ein Schluss auf der Zusammensetzung der Einheit beruht, z. B. bei der Aufgabe: Ein Tag hat 24 Stunden, wieviel Stunden haben 3 Tage?