Um den Begriff der Anzahl zu gewinnen, muss man den Sinn einer Zahlengleichung feststellen.

§ 62. Wie soll uns denn eine Zahl gegeben sein, wenn wir keine Vorstellung oder Anschauung von ihr haben können? Nur im Zusammenhange eines Satzes bedeuten die Wörter etwas. Es wird also darauf ankommen, den Sinn eines Satzes zu erklären, in dem ein Zahlwort vorkommt. Das giebt zunächst noch viel der Willkühr anheim. Aber wir haben schon festgestellt, dass unter den Zahlwörtern selbständige Gegenstände zu verstehen sind. Damit ist uns eine Gattung von Sätzen gegeben, die einen Sinn haben müssen, der Sätze, welche ein Wiedererkennen ausdrücken. Wenn uns das Zeichen a einen Gegenstand bezeichnen soll, so müssen wir ein Kennzeichen haben, welches überall entscheidet, ob b dasselbe sei wie a, wenn es auch nicht immer in unserer Macht steht, dies Kennzeichen anzuwenden. In unserm Falle müssen wir den Sinn des Satzes

»die Zahl, welche dem Begriffe F zukommt, ist dieselbe,
welche dem Begriffe G zukommt«

erklären; d. h. wir müssen den Inhalt dieses Satzes in anderer Weise wiedergeben, ohne den Ausdruck

»die Anzahl, welche dem Begriffe F zukommt«

zu gebrauchen. Damit geben wir ein allgemeines Kennzeichen für die Gleichheit von Zahlen an. Nachdem wir so ein Mittel erlangt haben, eine bestimmte Zahl zu fassen und als dieselbe wiederzuerkennen, können wir ihr ein Zahlwort zum Eigennamen geben.

§ 63. Ein solches Mittel nennt schon Hume[82]: »Wenn zwei Zahlen so combinirt werden, dass die eine immer eine Einheit hat, die jeder Einheit der andern entspricht, so geben wir sie als gleich an.« Es scheint in neuerer Zeit die Meinung unter den Mathematikern[83] vielfach Anklang gefunden zu haben, dass die Gleichheit der Zahlen mittels der eindeutigen Zuordnung definirt werden müsse. Aber es erheben sich zunächst logische Bedenken und Schwierigkeiten, an denen wir nicht ohne Prüfung vorbeigehen dürfen.

Das Verhältniss der Gleichheit kommt nicht nur bei Zahlen vor. Daraus scheint zu folgen, dass es nicht für diesen Fall besonders erklärt werden darf. Man sollte denken, dass der Begriff der Gleichheit schon vorher feststände, und dass dann aus ihm und dem Begriffe der Anzahl sich ergeben müsste, wann Anzahlen einander gleich wären, ohne dass es dazu noch einer besondern Definition bedürfte.

Hiergegen ist zu bemerken, dass für uns der Begriff der Anzahl noch nicht feststeht, sondern erst mittels unserer Erklärung bestimmt werden soll. Unsere Absicht ist, den Inhalt eines Urtheils zu bilden, der sich so als eine Gleichung auffassen lässt, dass jede Seite dieser Gleichung eine Zahl ist. Wir wollen also nicht die Gleichheit eigens für diesen Fall erklären, sondern mittels des schon bekannten Begriffes der Gleichheit, das gewinnen, was als gleich zu betrachten ist. Das scheint freilich eine sehr ungewöhnliche Art der Definition zu sein, welche wohl von den Logikern noch nicht genügend beachtet ist; dass sie aber nicht unerhört ist, mögen einige Beispiele zeigen.

§ 64. Das Urtheil: »die Gerade a ist parallel der Gerade b,« in Zeichen:

a ∥ b,

kann als Gleichung aufgefasst werden. Wenn wir dies thun, erhalten wir den Begriff der Richtung und sagen: »die Richtung der Gerade a ist gleich der Richtung der Gerade b«. Wir ersetzen also das Zeichen ∥ durch das allgemeinere =, indem wir den besondern Inhalt des ersteren an a und b vertheilen. Wir zerspalten den Inhalt in anderer als der ursprünglichen Weise und gewinnen dadurch einen neuen Begriff. Oft fasst man freilich die Sache umgekehrt auf, und manche Lehrer definiren: parallele Geraden sind solche von gleicher Richtung. Der Satz: »wenn zwei Geraden einer dritten parallel sind, so sind sie einander parallel« lässt sich dann mit Berufung auf den ähnlich lautenden Gleichheitssatz sehr bequem beweisen. Nur schade, dass der wahre Sachverhalt damit auf den Kopf gestellt wird! Denn alles Geometrische muss doch wohl ursprünglich anschaulich sein. Nun frage ich, ob jemand eine Anschauung von der Richtung einer Gerade hat. Von der Gerade wohl! aber unterscheidet man in der Anschauung von dieser Gerade noch ihre Richtung? Schwerlich! Dieser Begriff wird erst durch eine an die Anschauung anknüpfende geistige Thätigkeit gefunden. Dagegen hat man eine Vorstellung von parallelen Geraden. Jener Beweis kommt nur durch eine Erschleichung zu Stande, indem man durch den Gebrauch des Wortes »Richtung« das zu Beweisende voraussetzt; denn wäre der Satz: »wenn zwei Geraden einer dritten parallel sind, so sind sie einander parallel« unrichtig, so könnte man a ∥ b nicht in eine Gleichung verwandeln.

So kann man aus dem Parallelismus von Ebenen einen Begriff erhalten, der dem der Richtung bei Geraden entspricht. Ich habe dafür den Namen »Stellung« gelesen. Aus der geometrischen Aehnlichkeit geht der Begriff der Gestalt hervor, so dass man z. B. statt »die beiden Dreiecke sind ähnlich« sagt: »die beiden Dreiecke haben gleiche Gestalt« oder »die Gestalt des einen Dreiecks ist gleich der Gestalt des andern«. So kann man auch aus der collinearen Verwandtschaft geometrischer Gebilde einen Begriff gewinnen, für den ein Name wohl noch fehlt.

§ 65. Um nun z. B. vom Parallelismus[84] auf den Begriff der Richtung zu kommen, versuchen wir folgende Definition:

der Satz

»die Gerade a ist parallel der Gerade b«

sei gleichbedeutend mit

»die Richtung der Gerade a ist gleich der Richtung
der Gerade b«.

Diese Erklärung weicht insofern von dem Gewohnten ab, als sie scheinbar die schon bekannte Beziehung der Gleichheit bestimmt, während sie in Wahrheit den Ausdruck »die Richtung der Gerade a« einführen soll, der nur nebensächlich vorkommt. Daraus entspringt ein zweites Bedenken, ob wir nicht durch eine solche Festsetzung in Widersprüche mit den bekannten Gesetzen der Gleichheit verwickelt werden könnten. Welches sind diese? Sie werden als analytische Wahrheiten aus dem Begriffe selbst entwickelt werden können. Nun definirt Leibniz[85]:

»Eadem sunt, quorum unum potest substitui alteri salva veritate«.

Diese Erklärung eigne ich mir für die Gleichheit an. Ob man wie Leibniz »dasselbe« sagt oder »gleich«, ist unerheblich. »Dasselbe« scheint zwar eine vollkommene Uebereinstimmung, »gleich« nur eine in dieser oder jener Hinsicht auszudrücken; man kann aber eine solche Redeweise annehmen, dass dieser Unterschied wegfällt, indem man z. B. statt »die Strecken sind in der Länge gleich« sagt »die Länge der Strecken ist gleich« oder »dieselbe,« statt »die Flächen sind in der Farbe gleich« »die Farbe der Flächen ist gleich«. Und so haben wir das Wort oben in den Beispielen gebraucht. In der allgemeinen Ersetzbarkeit sind nun in der That alle Gesetze der Gleichheit enthalten.

Um unsern Definitionsversuch der Richtung einer Gerade zu rechtfertigen, müssten wir also zeigen, dass man

die Richtung von a

überall durch

die Richtung von b

ersetzen könne, wenn die Gerade a der Gerade b parallel ist. Dies wird dadurch vereinfacht, dass man zunächst von der Richtung einer Gerade keine andere Aussage kennt als die Uebereinstimmung mit der Richtung einer andern Gerade. Wir brauchten also nur die Ersetzbarkeit in einer solchen Gleichheit nachzuweisen oder in Inhalten, welche solche Gleichheiten als Bestandtheile[86] enthalten würden. Alle andern Aussagen von Richtungen müssten erst erklärt werden und für diese Definitionen können wir die Regel aufstellen, dass die Ersetzbarkeit der Richtung einer Gerade durch die einer ihr parallelen gewahrt bleiben muss.

§ 66. Aber noch ein drittes Bedenken erhebt sich gegen unsern Definitionsversuch. In dem Satze

»die Richtung von a ist gleich der Richtung von b«

erscheint die Richtung von a als Gegenstand[87] und wir haben in unserer Definition ein Mittel, diesen Gegenstand wiederzuerkennen, wenn er etwa in einer andern Verkleidung etwa als Richtung von b auftreten sollte. Aber dies Mittel reicht nicht für alle Fälle aus. Man kann z. B. danach nicht entscheiden, ob England dasselbe sei wie die Richtung der Erdaxe. Man verzeihe dies unsinnig scheinende Beispiel! Natürlich wird niemand England mit der Richtung der Erdaxe verwechseln; aber dies ist nicht das Verdienst unserer Erklärung. Diese sagt nichts darüber, ob der Satz

»die Richtung von a ist gleich q«

zu bejahen oder zu verneinen ist, wenn nicht q selbst in der Form »die Richtung von b« gegeben ist. Es fehlt uns der Begriff der Richtung; denn hätten wir diesen, so könnten wir festsetzen; wenn q keine Richtung ist, so ist unser Satz zu verneinen; wenn q eine Richtung ist, so entscheidet die frühere Erklärung. Es liegt nun nahe zu erklären:

q ist eine Richtung, wenn es eine Gerade b giebt,
deren Richtung q ist.

Aber nun ist klar, dass wir uns im Kreise gedreht haben. Um diese Erklärung anwenden zu können, müssen wir schon in jedem Falle wissen, ob der Satz

»q ist gleich der Richtung von b«

zu bejahen oder zu verneinen wäre.

§ 67. Wenn man sagen wollte: q ist eine Richtung, wenn es durch die oben ausgesprochene Definition eingeführt ist, so würde man die Weise, wie der Gegenstand q eingeführt ist, als dessen Eigenschaft behandeln, was sie nicht ist. Die Definition eines Gegenstandes sagt als solche eigentlich nichts von ihm aus, sondern setzt die Bedeutung eines Zeichens fest. Nachdem das geschehen ist, verwandelt sie sich in ein Urtheil, das von dem Gegenstande handelt, aber führt ihn nun auch nicht mehr ein und steht mit andern Aussagen von ihm in gleicher Linie. Man würde, wenn man diesen Ausweg wählte, voraussetzen, dass ein Gegenstand nur auf eine einzige Weise gegeben werden könnte; denn sonst würde daraus, dass q nicht durch unsere Definition eingeführt ist, nicht folgen, dass es nicht so eingeführt werden könnte. Alle Gleichungen würden darauf hinauskommen, dass das als dasselbe anerkannt würde, was uns auf dieselbe Weise gegeben ist. Aber dies ist so selbstverständlich und so unfruchtbar, dass es nicht verlohnte, es auszusprechen. Man könnte in der That keinen Schluss daraus ziehen, der von jeder der Voraussetzungen verschieden wäre. Die vielseitige und bedeutsame Verwendbarkeit der Gleichungen beruht vielmehr darauf, dass man etwas wiedererkennen kann, obwohl es auf verschiedene Weise gegeben ist.

§ 68. Da wir so keinen scharf begrenzten Begriff der Richtung und aus denselben Gründen keinen solchen der Anzahl gewinnen können, versuchen wir einen andern Weg. Wenn die Gerade a der Gerade b parallel ist, so ist der Umfang des Begriffes »Gerade parallel der Gerade a« gleich dem Umfange des Begriffes »Gerade parallel der Gerade b«; und umgekehrt: wenn die Umfänge der genannten Begriffe gleich sind, so ist a parallel b. Versuchen wir also zu erklären:

die Richtung der Gerade a ist der Umfang des Begriffes »parallel der Gerade a«;

die Gestalt des Dreiecks d ist der Umfang des Begriffes »ähnlich dem Dreiecke d«!

Wenn wir dies auf unsern Fall anwenden wollen, so haben wir an die Stelle der Geraden oder der Dreiecke Begriffe zu setzen und an die Stelle des Parallelismus oder der Aehnlichkeit die Möglichkeit die unter den einen den unter den andern Begriff fallenden Gegenständen beiderseits eindeutig zuzuordnen. Ich will der Kürze wegen den Begriff F dem Begriffe G gleichzahlig nennen, wenn diese Möglichkeit vorliegt, muss aber bitten, dies Wort als eine willkührlich gewählte Bezeichnungsweise zu betrachten, deren Bedeutung nicht der sprachlichen Zusammensetzung, sondern dieser Festsetzung zu entnehmen ist.

Ich definire demnach:

die Anzahl, welche dem Begriffe F zukommt, ist der Umfang[88] des Begriffes »gleichzahlig dem Begriffe F«

§ 69. Dass diese Erklärung zutreffe, wird zunächst vielleicht wenig einleuchten. Denkt man sich unter dem Umfange eines Begriffes nicht etwas Anderes? Was man sich darunter denkt, erhellt aus den ursprünglichen Aussagen, die von Begriffsumfängen gemacht werden können. Es sind folgende:

1. die Gleichheit,

2. dass der eine umfassender als der andere sei.

Nun ist der Satz:

der Umfang des Begriffes »gleichzahlig dem Begriffe F« ist gleich dem Umfange des Begriffes »gleichzahlig dem Begriffe G«

immer dann und nur dann wahr, wenn auch der Satz

»dem Begriffe F kommt dieselbe Zahl wie dem Begriffe G zu«

wahr ist. Hier ist also voller Einklang.

Man sagt zwar nicht, dass eine Zahl umfassender als eine andere sei in dem Sinne, wie der Umfang eines Begriffes umfassender als der eines andern ist; aber der Fall, dass

der Umfang des Begriffes »gleichzahlig dem Begriffe F«

umfassender sei als

der Umfang des Begriffes »gleichzahlig dem Begriffe G«

kann auch gar nicht vorkommen; sondern, wenn alle Begriffe, die dem G gleichzahlig sind, auch dem F gleichzahlig sind, so sind auch umgekehrt alle Begriffe, die dem F gleichzahlig sind, dem G gleichzahlig. Dies »umfassender« darf natürlich nicht mit dem »grösser« verwechselt werden, dass bei Zahlen vorkommt.

Freilich ist noch der Fall denkbar, dass der Umfang des Begriffes »gleichzahlig dem Begriffe F« umfassender oder weniger umfassend wäre als ein anderer Begriffsumfang, der dann nach unserer Erklärung keine Anzahl sein könnte; und es ist nicht üblich, eine Anzahl umfassender oder weniger umfassend als den Umfang eines Begriffes zu nennen; aber es steht auch nichts im Wege, eine solche Redeweise anzunehmen, falls solches einmal vorkommen sollte.