Versuche, die Schwierigkeit zu überwinden.

§ 40. Wir betrachten nun einige Ausführungen, die sich als Versuche zur Ueberwindung dieser Schwierigkeit darstellen, wenn sie auch wohl nicht immer mit klarem Bewusstsein in dieser Absicht gemacht sind.

Man kann zunächst eine Eigenschaft des Raumes und der Zeit zu Hilfe rufen. Ein Raumpunkt ist nämlich von einem andern, eine Gerade oder Ebene von einer andern, congruente Körper, Flächen- oder Linienstücke von einander, für sich allein betrachtet, gar nicht zu unterscheiden, sondern nur in ihrem Zusammensein als Bestandteile einer Gesammtanschauung. So scheint sich hier Gleichheit mit Unterscheidbarkeit zu vereinen. Aehnliches gilt von der Zeit. Daher meint wohl Hobbes,[68] dass die Gleichheit der Einheiten anders als durch Theilung des Continuums entstehe, könne kaum gedacht werden. Thomae[69] sagt: »Stellt man eine Menge von Individuen oder Einheiten im Raume vor und zählt man sie successive, wozu Zeit erforderlich ist, so bleibt bei aller Abstraction als unterscheidendes Merkmal der Einheiten noch ihre verschiedene Stellung im Raume und ihre verschiedene Aufeinanderfolge in der Zeit übrig.«

Zunächst erhebt sich das Bedenken gegen eine solche Auffassungsweise, dass dann das Zählbare auf das Räumliche und Zeitliche beschränkt wäre. Schon Leibniz[70] weist die Meinung der Scholastiker zurück, die Zahl entstehe aus der blossen Theilung des Continuums und könne nicht auf unkörperliche Dinge angewandt werden. Baumann[71] betont die Unabhängigkeit von Zahl und Zeit. Der Begriff der Einheit sei auch ohne die Zeit denkbar. St. Jevons[72] sagt: »Drei Münzen sind drei Münzen, ob wir sie nun nach einander zählen oder sie alle zugleich betrachten. In vielen Fällen ist weder Zeit noch Raum der Grund des Unterschiedes, sondern allein Qualität. Wir können Gewicht, Trägheit und Härte des Goldes als drei Eigenschaften auffassen, obgleich keine von diesen vor noch nach der andern ist weder im Raum noch in der Zeit. Jedes Mittel der Unterscheidung kann eine Quelle der Vielheit sein.« Ich füge hinzu: wenn die gezählten Gegenstände nicht wirklich auf einander folgen, sondern nur nach einander gezählt werden, so kann die Zeit nicht der Grund der Unterscheidung sein. Denn, um sie nach einander zählen zu können, müssen wir schon unterscheidende Kennzeichen haben. Die Zeit ist nur ein psychologisches Erforderniss zum Zählen, hat aber mit dem Begriffe der Zahl nichts zu thun. Wenn man unräumliche und unzeitliche Gegenstände durch Raum- oder Zeitpunkte vertreten lässt, so kann dies vielleicht für die Ausführung der Zählung vortheilhaft sein; grundsätzlich wird aber dabei die Anwendbarkeit des Zahlbegriffes auf Unräumliches und Unzeitliches vorausgesetzt.

§ 41. Wird denn aber der Zweck der Vereinigung von Unterscheidbarkeit und Gleichheit wirklich erreicht, wenn wir von allen unterscheidenden Kennzeichen ausser den räumlichen und zeitlichen absehen? Nein! Wir sind der Lösung nicht um Einen Schritt näher gekommen. Die grössere oder geringere Aehnlichkeit der Gegenstände thut nichts zur Sache, wenn sie doch zuletzt aus einander gehalten werden müssen. Ich darf die einzelnen Punkte, Linien u. s. f. hier ebenso wenig alle mit 1 bezeichnen, als ich sie bei geometrischen Betrachtungen sämmtlich A nennen darf; denn hier wie dort ist es nöthig, sie zu unterscheiden. Nur für sich, ohne Rücksicht auf ihre räumlichen Beziehungen sind die Raumpunkte einander gleich. Soll ich sie aber zusammenfassen, so muss ich sie in ihrem räumlichen Zusammensein betrachten, sonst schmelzen sie unrettbar in Einem zusammen. Punkte stellen in ihrer Gesammtheit vielleicht irgendeine sternbildartige Figur vor oder sind irgendwie auf einer Geraden angeordnet, gleiche Strecken bilden vielleicht mit den Endpunkten zusammenstossend eine einzige Strecke oder liegen getrennt von einander. Die so entstehenden Gebilde können für dieselbe Zahl ganz verschieden sein. So würden wir auch hier verschiedene Fünfen, Sechsen u. s. w. haben. Die Zeitpunkte sind durch kurze oder lange, gleiche oder ungleiche Zwischenzeiten getrennt. Alles dies sind Verhältnisse, die mit der Zahl an sich gar nichts zu thun haben. Ueberall mischt sich etwas Besonderes ein, worüber die Zahl in ihrer Allgemeinheit weit erhaben ist. Sogar ein einzelner Moment hat etwas Eigenthümliches, wodurch er sich etwa von einem Raumpunkte unterscheidet, und wovon nichts in dem Zahlbegriffe vorkommt.

§ 42. Auch der Ausweg, räumliche und zeitliche Anordnung durch einen allgemeinern Reihenbegriff zu ersetzen, führt nicht zum Ziele; denn die Stelle in der Reihe kann nicht der Grund des Unterscheidens der Gegenstände sein, weil diese schon irgendworan unterschieden sein müssen, um in eine Reihe geordnet werden zu können. Eine solche Anordnung setzt immer Beziehungen zwischen den Gegenständen voraus, seien es nun räumliche oder zeitliche oder logische oder Tonintervalle oder welche sonst, durch die man sich von einem zum andern leiten lässt, und die mit deren Unterscheidung nothwendig verbunden sind.

Wenn Hankel[73] ein Object 1 mal, 2 mal, 3 mal denken oder setzen lässt, so scheint auch dies ein Versuch zu sein, die Unterscheidbarkeit mit der Gleichheit des zu Zählenden zu vereinen. Aber man sieht auch sofort, dass es kein gelungener ist; denn diese Vorstellungen oder Anschauungen desselben Gegenstandes müssen, um nicht in Eine zusammenzufliessen, irgendwie verschieden sein. Ich meine auch, dass man berechtigt ist, von 45 Millionen Deutschen zu sprechen, ohne vorher 45 Millionen mal einen Normal-Deutschen gedacht oder gesetzt zu haben; das möchte etwas umständlich sein.

§ 43. Wahrscheinlich um die Schwierigkeiten zu vermeiden, die sich ergeben, wenn man mit St. Jevons jedes Zeichen 1 einen der gezählten Gegenstände bedeuten lässt, will E. Schröder dadurch einen Gegenstand nur abbilden. Die Folge ist, dass er nur das Zahlzeichen, nicht die Zahl erklärt. Er sagt nämlich[74]: »Um nun ein Zeichen zu erhalten, welches fähig ist auszudrücken, wieviele jener Einheiten[75] vorhanden sind, richtet man die Aufmerksamkeit der Reihe nach einmal auf eine jede derselben und bildet sie mit einem Strich: 1 (eine Eins, ein Einer) ab; diese Einer setzt man in eine Zeile neben einander, verbindet sie jedoch unter sich durch das Zeichen + (plus), da sonst zum Beispiel 111 nach der gewöhnlichen Zahlenbezeichnung als einhundert und elf gelesen würde. Man erhält auf diese Weise ein Zeichen wie:

1 + 1 + 1 + 1 + 1,

dessen Zusammensetzung man dadurch beschreiben kann, dass man sagt:

»Eine natürliche Zahl ist eine Summe von Einern.«

Hieraus sieht man, dass für Schröder die Zahl ein Zeichen ist. Was durch dies Zeichen ausgedrückt wird, das, was ich bisher Zahl genannt habe, setzt er mit den Worten »wieviele jener Einheiten vorhanden sind« als bekannt voraus. Auch unter dem Worte »Eins« versteht er das Zeichen 1, nicht dessen Bedeutung. Das Zeichen + dient ihm zunächst nur als äusserliches Verbindungsmittel ohne eignen Inhalt; erst später wird die Addition erklärt. Er hätte wohl kürzer so sagen können: man schreibt ebensoviele Zeichen 1 neben einander, als man zu zählende Gegenstände hat, und verbindet sie durch das Zeichen +. Die Null würde dadurch auszudrücken sein, dass man nichts hinschreibt.

§ 44. Um nicht die unterscheidenden Kennzeichen der Dinge in die Zahl mitaufzunehmen, sagt St. Jevons[76]:

»Es wird jetzt wenig schwierig sein, eine klare Vorstellung von der Zahlen-Abstraction zu bilden. Sie besteht im Abstrahiren von dem Charakter der Verschiedenheit, aus der Vielheit entspringt, indem man lediglich ihr Vorhandensein beibehält. Wenn ich von drei Männern spreche, so brauche ich nicht gleich die Kennzeichen einzeln anzugeben, an denen man jeden von ihnen von jedem unterscheiden kann. Diese Kennzeichen müssen vorhanden sein, wenn sie wirklich drei Männer und nicht ein und derselbe sind, und indem ich von ihnen als von vielen rede, behaupte ich damit zugleich das Vorhandensein der erforderlichen Unterschiede. Unbenannte Zahl ist also die leere Form der Verschiedenheit

Wie ist das zu verstehn? Man kann entweder von den unterscheidenden Eigenschaften der Dinge abstrahiren, bevor man sie zu einem Ganzen vereinigt; oder man kann erst ein Ganzes bilden und dann von der Art der Unterschiede abstrahiren. Auf dem ersten Wege würden wir gar nicht zur Unterscheidung der Dinge kommen und also auch das Vorhandensein der Unterschiede nicht festhalten können; den zweiten Weg scheint Jevons zu meinen. Aber ich glaube nicht, dass wir so die Zahl 10000 gewinnen würden, weil wir nicht im Stande sind, so viele Unterschiede gleichzeitig aufzufassen und ihr Vorhandensein festzuhalten; denn, wenn es nach einander geschähe, so würde die Zahl nie fertig werden. Wir zählen zwar in der Zeit; aber dadurch gewinnen wir nicht die Zahl, sondern bestimmen sie nur. Uebrigens ist die Angabe der Weise des Abstrahirens keine Definition.

Was soll man sich unter der »leeren Form der Verschiedenheit« denken? etwa einen Satz wie

»a ist verschieden von b«,

wobei a und b unbestimmt bleiben? Wäre dieser Satz etwa die Zahl 2? Ist der Satz

»die Erde hat zwei Pole«

gleichbedeutend mit

»der Nordpol ist vom Südpol verschieden«?

Offenbar nicht. Der zweite Satz könnte ohne den ersten und dieser ohne jenen bestehen. Für die Zahl 1000 würden wir dann

1000999
12

solche Sätze haben, die eine Verschiedenheit ausdrücken.

Was Jevons sagt, passt insbesondere gar nicht auf die 0 und die 1. Wovon soll man eigentlich abstrahiren, um z. B. vom Monde auf die Zahl 1 zu kommen? Durch Abstrahiren erhält man wohl die Begriffe: Begleiter der Erde, Begleiter eines Planeten, Himmelskörper ohne eignes Licht, Himmelskörper, Körper, Gegenstand; aber die 1 ist in dieser Reihe nicht anzutreffen; denn sie ist kein Begriff, unter den der Mond fallen könnte. Bei der 0 hat man gar nicht einmal einen Gegenstand, von dem bei der Abstraction auszugehen wäre. Man wende nicht ein, dass 0 und 1 nicht Zahlen in demselben Sinne seien wie 2 und 3! Die Zahl antwortet auf die Frage wieviel? und wenn man z. B. fragt: wieviel Monde hat dieser Planet? so kann man sich ebenso gut auf die Antwort 0 oder 1 wie 2 oder 3 gefasst machen, ohne dass der Sinn der Frage ein andrer wird. Zwar hat die Zahl 0 etwas Besonderes und ebenso die 1, aber das gilt im Grunde von jeder ganzen Zahl; nur fällt es bei den grösseren immer weniger in die Augen. Es ist durchaus willkührlich, hier einen Artunterschied zu machen. Was nicht auf 0 oder 1 passt, kann für den Begriff der Zahl nicht wesentlich sein.

Endlich wird durch die Annahme dieser Entstehungsweise der Zahl die Schwierigkeit gar nicht gehoben, auf die wir bei der Betrachtung der Bezeichnung

1´ + 1´´ + 1´´´ + 1´´´´ + 1´´´´´

für 5 gestossen sind. Diese Schreibung steht gut im Einklänge mit dem, was Jevons über die zahlenbildende Abstraction sagt; die obern Striche deuten nämlich an, dass eine Verschiedenheit da ist, ohne jedoch ihre Art anzugeben. Aber das blosse Bestehen der Verschiedenheit genügt schon, wie wir gesehen haben, um bei der Jevons'schen Auffassung verschiedene Einsen, Zweien, Dreien hervorzubringen, was mit dem Bestande der Arithmetik durchaus unverträglich ist.