Vergrösserung oder Verkleinerung eines Quadrats oder Rechtecks.
[§ 86.] Wenn man in [Fig. 87], nachdem g h i k gegeben ist, von b aus die mit g h und h i parallelen b f und b e zieht, oder wenn man 4 Punkte der Diagonalen g i und h k durch Linien verbindet, welche mit den Seiten parallel sind, so entsteht bei A wiederum ein Quadrat f b e k oder a b c d, bei B ein Rechteck f b e k oder a b c d, dessen Seitenpaare dasselbe Verhältnis von 2 : 3 haben, wie g h und h i. Wie auf die gleiche Weise aus einem kleineren ein grösseres Quadrat oder Rechteck durch Verlängerung der Diagonale gemacht werden kann, ist hienach leicht zu verstehen.
Fig. 87.
Aber während in A die Linien des inneren Quadrats a b c d überall gleich weit von g h i k entfernt sind, ist dies bei den Rechtecken a b c d und g h i k in B nicht der Fall: der Zwischenraum zwischen den kürzeren Seiten ist grösser, als zwischen den längeren. Soll auf einem Wege, der auch bei verkürzter Stellung des Rechtecks anwendbar wäre, innerhalb g h i k ein (paralleles) Rechteck gezeichnet werden, so dass die Seiten beider überall gleiche Entfernung von einander haben, so muss auf einer längeren Seite z. B. auf g h ein Teil = der Länge der kürzeren Seite abgeschnitten, also z. B. g n = g k gemacht und so ein Quadrat g n m k gebildet werden, um dessen Diagonalen zu dem genannten Zwecke zu benüzen. Soll f g die Breite des Zwischenraums sein, so wird von f eine mit g h parallele Linie gezogen, welche die Diagonale g m in o schneidet und hiemit den Punkt p ergibt. Zieht man nun von m durch den Schnittpunkt der Diagonalen g i und h k eine Linie nach s, so ist g s = n h, s h = g n = h i; s i ist somit die Diagonale eines Quadrats = g n m k, und können die Punkte y und z durch die mit k i und i h parallelen Linien bestimmt werden.
[§ 87.] Die Construction der verkürzten Quadrate und Rechtecke in [Fig. 88] und [89] ist hiemit gegeben. In [Fig. 89] dient dieselbe dazu, die 4 Tischbeine an die richtige Stelle zu sezen. [Fig. 90] stellt in grösserem Massstab die Verjüngung der Tischbeine nach unten dar.
Fig. 88.
Fig. 89.
Fig. 90.
[Fig. 91] zeigt einen Stuhl ohne Lehne. Der Siz bildet ein Quadrat, die Punkte a b c d, von welchen die Stuhlbeine ausgehen, ergeben sich daher durch die Diagonalen wie in [Fig. 87] A und [Fig. 88]. Da sie nach auswärts stehen, so ist senkrecht unter a b c d das Quadrat e f g h gebildet und mittels seiner Diagonalen vergrössert.
Fig. 91.
Stühle mit Lehnen sind gewöhnlich so geformt, dass der Siz hinten schmäler ist als vorn. Man kann deshalb, wenn beispielsweise a b [Fig. 92] die Vorderseite des Sizes sein soll, zunächst ein Quadrat a b c d bilden, um sodann die Lage der geometrisch gleichweit von c und d entfernten Punkte e und f entweder auf früher beschriebene Weise oder nach dem Augenmass (e c kleiner als d f) zu bestimmen. Für die Punkte, von welchen die Füsse ausgehen, sind nun die Diagonalen a e und b f massgebend.
Fig. 92.