Verkürzte Sechsecke.

[§ 96.] Die geometrische Construction eines Sechsecks besteht darin, dass ein Kreis in 6 Teile geteilt wird, von welchen jeder die Grösse eines Halbmessers jenes Kreises hat: man gibt – [Fig. 102] – dem Zirkel die Weite eines Halbmessers z. B. O B, schneidet von B aus den Kreis in C, von C aus in D u. s. w. und verbindet diese Punkte durch gerade Linien. Zieht man von den 6 Ecken Linien nach dem Mittelpunkt O, so entstehen 6 gleichseitige Dreiecke; schliesst man das Sechseck in ein Rechteck, wie H K M N ein, so sind die beiden längeren Seiten je = 2 Seiten des Sechsecks: H K ist gleich 2 mal A B, H G = A B; H A, A G, G B und B K sind gleich gross. Die kürzeren Seiten sind je = 2 mal G O; H F und F N sind je = G O.

Fig. 102.

Ist nun a b als Seite eines verkürzten Sechsecks, P als Augpunkt und D/3 als Drittel der Distanz gegeben, so wird b k und a h je = der Hälfte von a b gemacht, ein gleichseitiges Dreieck a i b gebildet (indem von a und b aus 2 Kreise mit der Zirkelweite a b beschrieben werden, welche sich in i schneiden) und k c = g i gemacht durch eine Linie aus D/3, nach y (k y = ein Drittel von g i). Hiemit sind das Rechteck h k m n und die weiteren Punkte d, e und f gegeben.

[§ 97.] In [Fig. 103] ist angenommen, dass h n als kürzere Seite des von unten gesehenen Rechtecks, P als Augpunkt und D/2 als halbe Distanz gegeben sei, in f also eine Ecke des Sechsecks liege. Beschreibt man von n und von f aus zwei Kreisbögen mit der Zirkelweite n f, so schneiden sich dieselben in s und es entsteht, indem durch s eine rechtwinklig zu f s stehende Linie bis zu den in f und n errichteten Senkrechten gezogen wird, ein gleichseitiges Dreieck, dessen Mittellinie s f = f n oder = f h ist, dessen Seiten also (vgl. [§ 96], [Fig. 102]) auf die durch f gehende Wagrechte übertragen, die Länge einer Seite des zu zeichnenden Sechsecks darstellen. h p ist = f z; die von h nach P gehende Seite des zu bildenden Rechtecks muss also = 2 mal h p sein (wie H K [Fig. 102] = 2 mal A B ist), was durch eine Linie von D/2 nach p erreicht wird. Ist so das Verhältnis der Seiten in dem Rechteck h k m n das gleiche, wie in H K M N [Fig. 102], so bleibt nur noch übrig, dasselbe mittels Diagonalen wie dort in 4 gleiche Teile zu teilen, um die weiteren Ecken zu erhalten.

Fig. 103.

[§ 98.] In [Fig. 104] soll von dem Punkte d des Kreises A B C D aus ein Sechseck gezeichnet werden. Das Quadrat des Kreises ist E F G H. Wie in [Fig. 101] ist E e und F f = der Hälfte von E F gemacht und von o aus ein Halbkreis beschrieben, auf welchem x dem Punkte d des verkürzten Kreises entspricht (mittels P d m und m x). Von x aus schneidet der Zirkel mit der Weite eines Halbmessers D o oder x o den Halbkreis in b, von hier aus in y, und diese beiden Punkte werden auf die mehrfach beschriebene Weise nach a und c übertragen; Linien aus d, a und c durch den Mittelpunkt des Quadrats gezogen, ergeben die 3 jenseitigen Ecken.

Fig. 104.