V. Zwei Bedeutungen des Apriori und die implizite Voraussetzung Kants.
Der Begriff des Apriori hat bei Kant zwei verschiedene Bedeutungen. Einmal heißt er soviel wie „apodiktisch gültig“, „für alle Zeiten gültig“, und zweitens bedeutet er „den Gegenstandsbegriff konstituierend“.
Wir müssen die zweite Bedeutung noch näher erläutern. Der Gegenstand der Erkenntnis, das Ding der Erscheinung, ist nach Kant nicht unmittelbar gegeben. Die Wahrnehmung gibt nicht den Gegenstand, sondern nur den Stoff, aus dem er geformt wird; diese Formung wird durch den Urteilsakt vollzogen. Das Urteil ist die Synthesis, die das Mannigfaltige der Wahrnehmung zum Objekt zusammenfaßt. Dazu muß im Urteil eine Einordnung in ein bestimmtes Schema vollzogen werden; je nach der Wahl des Schemas entsteht ein Ding oder ein bestimmter Typus von Relation. Die Anschauung ist die Form, in der die Wahrnehmung den Stoff darbietet, also gleichfalls ein synthetisches Moment. Aber erst das begriffliche Schema, die Kategorie, schafft das Objekt; der Gegenstand der Wissenschaft ist also nicht ein „Ding an sich“, sondern ein durch Kategorien konstituiertes, auf Anschauung basiertes Bezugsgebilde.
Unsere vorangegangenen Überlegungen können den Grundgedanken dieser Theorie nur bestätigen. Wir sahen, daß die Wahrnehmung das Wirkliche nicht definiert, daß erst die Zuordnung zu mathematischen Begriffen das Element der Wirklichkeit, den wirklichen Gegenstand, bestimmt. Wir sahen auch, daß es gewisse Prinzipien der Zuordnung geben muß, weil sonst die Zuordnung nicht definiert ist. In der Tat müssen diese Prinzipien derart sein, daß sie bestimmen, wie die zugeordneten Begriffe sich zu Gebilden und Abläufen zusammenfügen; sie definieren also erst das wirkliche Ding und das wirkliche Geschehen. Wir dürfen sie als konstitutive Prinzipien der Erfahrung bezeichnen. Kant nennt als solche Schemata Raum, Zeit und die Kategorien; wir werden zu untersuchen haben, ob dies die geeigneten Nebenbedingungen für die eindeutige Zuordnung sind.
Die zweite Bedeutung des Apriori-Begriffs ist jedenfalls die wichtigere. Denn sie verleiht diesem Begriff die zentrale Stellung, die er seit Kant in der Erkenntnistheorie inne hat. Es war die große Entdeckung Kants, daß der Gegenstand der Erkenntnis nicht schlechthin gegeben, sondern konstruiert ist, daß er begriffliche Elemente enthält, die in der reinen Wahrnehmung nicht enthalten sind. Zwar ist dieser konstruierte Bezugspunkt nicht eine bloße Fiktion, denn sonst könnte seine Struktur nicht in so enger Form von außen, durch die wiederholte Wahrnehmung, vorgeschrieben werden; darum bezieht Kant ihn auf ein Ding an sich, das selbst nicht erkennbar doch darin zutage tritt, daß es das leere Schema der Kategorien mit positivem Inhalt füllt.
Das ist natürlich alles sehr bildhaft gesprochen, und wir müssen, wollen wir gültige Resultate finden, zu exakteren Formulierungen zurückkehren; aber es ist nicht unzweckmäßig, sich die Kantische Lehre in mehr anschaulicher Form zu vergegenwärtigen, weil man damit zu einer raschen Übersicht ihrer wesentlichen Gedanken kommt. Zum Teil liegt es auch darin begründet, daß die Kantischen Begriffsbildungen einer mehr von grammatischer als von mathematischer Präzision durchtränkten Zeit angehören, und daher nur der formale Aufbau dieser Begriffe, nicht ihr sachlicher Kern, sprachlich faßbar ist. Vielleicht wird einmal eine spätere Zeit auch unsere Begriffe bildhaft nennen.
Die zugeordneten Kategorien sind natürlich nicht in dem Sinne Bestandteile des Gegenstands wie seine materiellen Teile. Der wirkliche Gegenstand ist das Ding, wie es vor uns steht; es hat keinen Sinn, dieses Sein noch näher definieren zu wollen, denn was „wirklich“ bedeutet, kann nur erlebt werden, und alle Versuche der Schilderung bleiben Analogien oder sind Darstellungen für den begrifflichen Ausdruck dieses Erlebnisses. Die Wirklichkeit der Dinge ist zu trennen von der Wirklichkeit der Begriffe, die, insofern man sie real nennen will, nur psychologische Existenz haben. Aber es bleibt eine eigentümliche Relation zwischen dem wirklichen Ding und dem Begriff, weil erst durch die Zuordnung des Begriffs definiert wird, was in dem „Kontinuum“ der Wirklichkeit ein Einzelding ist, und weil auch erst der begriffliche Zusammenhang auf Grund von Wahrnehmungen entscheidet, ob ein gedachtes Einzelding „in Wirklichkeit da ist“.
Wenn man die Menge der reellen Funktionen von zwei Variablen durch ein Koordinatenkreuz der Ebene zuordnet, so bestimmt jede Funktion eine Figur in dem Kontinuum der Ebene. Die einzelne Figur ist also erst durch die Funktion definiert. Allerdings läßt sie sich auch anders definieren, indem man etwa eine Kurve anschaulich zeichnet. Aber welche anschauliche Kurve der Ebene in dem genannten Beispiel gerade einer bestimmten Funktion zugeordnet wird, hängt von der Art ab, wie man das Koordinatenkreuz in die Ebene hineinlegt, wie man die Maßverhältnisse wählt usw. Wir müssen dabei zwei Arten von Zuordnungsprinzipien unterscheiden: solche, die von der Definiertheit der Elemente auf beiden Seiten Gebrauch machen, und solche, die nur die Elemente einer Seite benutzen. Die Festlegung des Koordinatenkreuzes ist von der ersten Art, denn sie vollzieht sich dadurch, daß man bestimmte anschaulich definierte Punkte den Koordinatenzahlen zuordnet; sie ist also selbst wieder eine Zuordnung. Eine Bedingung der zweiten Art wäre z. B. die folgende. Wollen wir eine Funktion f (x,y,z) = 0 von drei Variablen der Ebene zuordnen, so geschieht dies durch eine einparametrige Kurvenschar. Welche Variablen dabei den Achsen entsprechen, ist durch die Festlegung des Koordinatenkreuzes bestimmt; denn diese sagt ja, daß die und die Punkte der Ebene den Werten x, und jene anderen Punkte der Ebene den Werten y entsprechen. So ist also auch festgelegt, welche Variable als Parameter auftritt. Trotzdem ist immer noch eine Willkür vorhanden. Im allgemeinen erhält man die Kurvenschar dadurch, daß man für jeden Wert z = p = konst. eine Kurve f (x,y,p) = 0 konstruiert. Man kann aber auch eine beliebige Funktion φ (x,z) p′ = konst. annehmen und p′ als Parameter wählen, dann erhält man eine Kurvenschar von ganz anderer Gestalt. Aber diese Kurvenschar ist ebensogut ein Bild der Funktion f (x,y,z) wie die erste. Man kann nicht sagen, daß die eine Schar der Funktion besser angepaßt sei als die andere; die erste ist nur für unser Anschauungsvermögen durchsichtiger, unseren psychologischen Fähigkeiten besser angepaßt. Es hängt also ganz von der Wahl des Parameters ab, welche Menge der anschaulichen Kurven durch die Zuordnung zu f (x,y,z) ausgewählt wird. Trotzdem ist die Bestimmung des Parameters nur für die analytische Seite der Zuordnung eine Vorschrift, und benutzt zu ihrer Formulierung keinerlei Eigenschaften der geometrischen Seite. Und wir bemerken, daß es Zuordnungsprinzipien gibt, die sich nur auf die eine Seite der Zuordnung beziehen, und trotzdem auf die Auswahl der anderen Seite von entscheidendem Einfluß sind.
Wir haben gesehen, daß die Definiertheit der Elemente auf der einen Seite der Erkenntniszuordnung fehlt; und darum kann es für die Erkenntnis keine Zuordnungsprinzipien der ersten Art geben, sondern nur solche, die sich auf die begriffliche Seite der Zuordnung beziehen und daher mit gleichem Recht Ordnungsprinzipien heißen können. Daß es möglich ist, allein mit der zweiten Art von Zuordnungsprinzipien auszukommen, ist eine große Merkwürdigkeit, und ich wüßte gar keine andern solchen Fälle neben dem Erkenntnisphänomen zu nennen. Aber sie ist nicht merkwürdiger als die Tatsache des Wirklichkeitserlebnisses überhaupt, und hängt damit zusammen, daß Eindeutigkeit für diese Zuordnung etwas anderes bedeutet als eine Beziehung auf „dasselbe“ Element der Wirklichkeitsseite, daß sie durch ein von der Zuordnung unabhängiges Kriterium, die Wahrnehmung, konstatiert wird. Gerade deshalb haben die Zuordnungsprinzipien für den Erkenntnisprozeß eine viel tiefere Bedeutung als für jede andere Zuordnung. Denn indem sie die Zuordnung bestimmen, werden durch sie erst die Einzelelemente der Wirklichkeit definiert, und in diesem Sinne sind sie konstitutiv für den wirklichen Gegenstand; in Kants Worten: „weil nur vermittelst ihrer überhaupt irgendein Gegenstand der Erfahrung gedacht werden kann“[12].
Als Beispiel für Zuordnungsprinzipien sei das Wahrscheinlichkeitsprinzip genannt, welches definiert, wann eine Reihe von Messungszahlen als Werte derselben Konstanten anzusehen sind[13]. (Man denke etwa an eine Verteilung nach dem Gaußschen Fehlergesetz.) Dieses Prinzip bezieht sich allein auf die begriffliche Seite der Zuordnung, und ist dennoch vor anderen Sätzen der Physik dadurch ausgezeichnet, daß es unmittelbar der Definition des Wirklichen dient; es definiert die physikalische Konstante. Ein anderes Beispiel bildet das Genidentitätsprinzip[14], welches aussagt, wie physikalische Begriffe zu Reihen zusammengefaßt werden müssen, damit sie dasselbe in der Zeit sich identisch bleibende Ding definieren. Auch Raum und Zeit sind solche Zuordnungsprinzipien, denn sie besagen z. B., daß vier Zahlen erst einen einzigen Wirklichkeitspunkt definieren. Für die alte Physik war auch die euklidische Metrik ein solches Zuordnungsprinzip, denn sie gab Relationen an, wie sich Raumpunkte ohne Unterschied ihrer physikalischen Qualität zu ausgedehnten Gebilden zusammenfügen; die Metrik definierte nicht, wie Temperatur oder Druck, einen physikalischen Zustand, sondern bildete einen Teil des Begriffs vom physikalischen Ding, das erst Träger aller Zustände ist. Obgleich diese Prinzipien Vorschriften für die begriffliche Seite der Zuordnung sind und ihr als Zuordnungsaxiome vorangestellt werden können, unterscheiden sie sich von den sonst als Axiome der Physik bezeichneten Sätzen. Man kann die Einzelgesetze der Physik unter sich in ein deduktives System bringen, so daß sie alle als Folgerungen einiger weniger Grundgleichungen erscheinen. Diese Grundgleichungen enthalten aber immer noch spezielle mathematische Operationen; so geben die Einsteinschen Gravitationsgleichungen an, in welcher speziellen mathematischen Beziehung die physikalische Größe Rik zu den physikalischen Größen Tik und gik steht. Wir wollen sie deshalb Verknüpfungsaxiome nennen[15]. Die Zuordnungsaxiome unterscheiden sich von ihnen dadurch, daß sie nicht bestimmte Zustandsgrößen mit andern verknüpfen, sondern allgemeine Regeln enthalten, nach denen überhaupt verknüpft wird. So sind in den Gravitationsgleichungen die Axiome der Arithmetik als Regeln der Verknüpfung vorausgesetzt, und diese sind daher Zuordnungsprinzipien der Physik.
Obgleich die Zuordnung der Erkenntnis nur erlebnismäßig vollzogen und nicht durch begriffliche Relationen hinreichend charakterisiert werden kann, ist sie doch an die Anwendung jener Zuordnungsprinzipien in eigentümlicher Weise gebunden. Wenn wir z. B. ein bestimmtes mathematisches Symbol einer physikalischen Kraft zuordnen, so müssen wir, um die Kraft als Gegenstand denken zu können, ihr die Eigenschaften des mathematischen Vektors zuschreiben; hier sind also die auf Vektoroperationen bezüglichen Axiome der Arithmetik konstitutive Prinzipien, Kategorien eines physikalischen Begriffs[D]. Wenn wir von der Bahn eines Elektrons reden, so müssen wir das Elektron als sich selbst identisch bleibendes Ding denken, also das Genidentitätsprinzip als konstitutive Kategorie benutzen. Dieser Zusammenhang der begrifflichen Kategorie mit dem Zuordnungserlebnis bleibt als letzter, nicht analysierbarer Rest bestehen. Aber er grenzt deutlich eine Klasse von Prinzipien dadurch ab, daß er sie, die als begriffliche Formeln nur für die begriffliche Seite der Zuordnung gelten können, als Formen der Erkenntnis den allgemeinsten Verknüpfungsgesetzen noch voranstellt. Und diese Prinzipien sind deshalb von so tiefer Bedeutung, weil sie das sonst völlig undefinierte Problem der Erkenntniszuordnung erst zu einem definierten machen.
[D] Daran liegt es auch, daß uns die Sätze vom Parallelogramm der Kräfte so selbstverständlich vorkommen und wir ihren empirischen Charakter gar nicht sehen. Sie sind auch selbstverständlich, wenn die Kraft ein Vektor ist, aber das ist gerade das Problem.
Wir müssen jetzt die beiden Bedeutungen des Apriori-Begriffs, die wir nannten, in einen Zusammenhang bringen. Definieren wir einmal „apriori“ im Sinne der zweiten Bedeutung als „Gegenstand konstituierend“. Wie folgt daraus, daß die aprioren Prinzipien apodiktisch gelten, daß sie von aller Erfahrung ewig unberührt bleiben?
Kant begründet diesen Schluß folgendermaßen: Die menschliche Vernunft, d. i. der Inbegriff von Verstand und Anschauung, trägt eine bestimmte Struktur in sich. Diese Struktur schreibt die allgemeinen Gesetze vor, nach denen das Wahrnehmungsmaterial geordnet wird, damit Erkenntnisse entstehen. Jede Erfahrungserkenntnis ist als Erkenntnis bereits durch eine solche Einordnung zustande gekommen, kann also niemals einen Gegenbeweis für die Ordnungsprinzipien darstellen. Darum haben diese apodiktische Gültigkeit.
Sie gelten, solange die menschliche Vernunft sich nicht ändert, und in diesem Sinne ewig. Jedenfalls kann durch Erfahrungen eine Änderung der menschlichen Vernunft nicht zustande kommen, weil Erfahrungen die Vernunft voraussetzen. Ob sich aber die Vernunft aus inneren Gründen einmal ändern wird, ist eine müßige Frage und für Kant irrelevant. Jedenfalls will er nicht bestreiten, daß andere Wesen existieren könnten, die andere konstitutive Prinzipien benutzen als wir[16]; damit ist natürlich auch die Möglichkeit offen gelassen, daß es biologische Übergangsformen zwischen diesen Wesen und uns gibt, und daß eine biologische Entwicklung unserer Vernunft zu derartigen andersvernünftigen Wesen stattfindet. Kant spricht allerdings niemals von dieser Möglichkeit, aber sie würde seiner Theorie nicht widersprechen. Was seine Theorie ausschließt, ist nur die Veränderung der Vernunft und ihrer Ordnungsprinzipien durch Erfahrungen; in diesem Sinne ist das „apodiktisch gültig“ zu verstehen.
Übertragen wir diesen Gedankengang auf unsere bisherigen Formulierungen, so lautet er folgendermaßen: Wenn wir Wahrnehmungsdaten zur Erkenntnis zusammenordnen, so müssen Prinzipien da sein, die diese Zuordnung genauer definieren; wir nannten sie Zuordnungsprinzipien und erkannten in ihnen diejenigen Prinzipien, welche den Gegenstand der Erkenntnis erst definieren. Fragen wir, welches diese Prinzipien sind, so brauchen wir nur die Vernunft zu fragen, und nicht die Erfahrung; denn die Erfahrung wird ja erst durch sie konstituiert. Kants Verfahren zur Beantwortung der kritischen Frage besteht deshalb in der Analyse der Vernunft. Wir haben in den Abschnitten II und III eine Reihe von Prinzipien apriori genannt; wir wollen damit ausdrücken, daß sie sich nach dem Kantischen Verfahren als Zuordnungsprinzipien ergeben würden. Wir durften dafür das Kriterium der Evidenz benutzen, denn dies wird auch von Kant als charakteristisch für seine Prinzipien eingeführt. Auch erscheint es selbstverständlich, daß diese Prinzipien, die ihren Grund nur in der Vernunft tragen, evident erscheinen müssen[17].
Wir hatten aber festgestellt, daß die Zuordnungsprinzipien dadurch ausgezeichnet sein müssen, daß sie die eindeutige Zuordnung möglich machen; dahin hatte sich uns der Sinn der kritischen Frage dargestellt. Es ist aber nicht gesagt, daß diejenigen Prinzipien, die in der Vernunft veranlagt sind, auch diese Eigenschaft besitzen, denn das Kriterium der Eindeutigkeit, die Wahrnehmung, ist von der Vernunft ganz unabhängig. Es müßte vielmehr ein großer Zufall der Natur sein, wenn gerade die vernünftigen Prinzipien auch die eindeutig bestimmenden wären. Nur eine Möglichkeit gibt es, dieses Zusammentreffen verständlich zu machen: wenn es für die Forderung der Eindeutigkeit auf die Prinzipien der Zuordnung gar nicht ankommt, wenn also für jedes beliebige System von Zuordnungsprinzipien eine eindeutige Zuordnung immer möglich ist.
In den von uns bisher angezogenen Beispielen einer Zuordnung war diese Forderung keineswegs erfüllt. Es gibt dort nur eine Klasse von Bedingungssystemen, die eine eindeutige Zuordnung definieren. So führten wir an, daß die rationalen Brüche sich auf verschiedene Weise Punkten einer geraden Linie zuordnen lassen, je nach der Wahl der Nebenbedingungen. Allerdings führen nicht alle verschiedenen Systeme von Nebenbedingungen auf eine verschiedene Zuordnung; vielmehr gibt es Systeme, die gegeneinander substituiert werden können, weil sie doch nur dieselbe Zuordnung definieren. Solche Systeme sollen schlechthin dieselben heißen; verschieden sollen nur solche Systeme heißen, die auch auf verschiedene Zuordnungen führen. Andererseits gibt es Systeme, die sich in ihren Forderungen direkt widersprechen. Man braucht dazu nur ein Prinzip und sein Gegenteil in einem System zu vereinigen. Solche explizit widerspruchsvollen Systeme sollen von vornherein ausgeschlossen sein. Für das Beispiel der rationalen Brüche können wir sagen, daß deren Zuordnung zu Punkten der geraden Linie durch verschiedene Systeme von Nebenbedingungen eindeutig gemacht wird. Aber es lassen sich natürlich leicht Systeme angeben, die das nicht erreichen. Man braucht nur in einem System der genannten Klasse ein wesentliches Prinzip wegzulassen, dann hat man ein unvollständiges System, das sicherlich die Eindeutigkeit nicht mehr erreicht.
Für die Erkenntniszuordnung kann man das aber nicht so einfach schließen. Wäre z. B. das Prinzipiensystem ein unvollständiges, so wäre es leicht durch einige Erfahrungssätze so zu ergänzen, daß ein eindeutiges System entsteht. Vielleicht darf man dahin die Meinung der bisherigen Aprioritätsphilosophie (allerdings kaum die Meinung Kants) deuten, daß es sich in dem evidenten Prinzipiensystem um ein unvollständiges System handelt. Es ist aber bisher nicht der Versuch gemacht worden, das zu beweisen. Zwar steht fest, daß in diesem System keine expliziten Widersprüche enthalten sind. Aber dann kann das System immer noch zu der großen Klasse derjenigen Systeme gehören, die einen impliziten Widerspruch für die Zuordnung ergeben. Da das Kriterium der Eindeutigkeit, die Wahrnehmung, von dem System ganz unabhängig von außen bestimmt ist, so ist es sehr wohl möglich, daß die Widersprüche erst bemerkt werden, wenn das System bis zu einigem Umfang ausgebaut ist. Wir dürfen hier an die nichteuklidischen Geometrieen erinnern, in denen das Parallelenaxiom geändert wird, aber sonst das euklidische System übernommen wird; daß durch das so gewonnene System kein Widerspruch entsteht, läßt sich erst durch den konsequenten Ausbau dieser Geometrie feststellen. Freilich ist gerade das System der Erkenntnis kein mathematisches, und darum kann hier nur der Ausbau einer experimentellen Physik entscheiden. Hier liegt der Grund, warum die Relativitätstheorie, die als rein physikalische Theorie entstanden ist, der Erkenntnistheorie so wichtig wird.
Man hat in der bisherigen Diskussion die Frage gewöhnlich nur für einzelne Prinzipien gestellt. So glaubte man, daß das Kausalprinzip nie auf Widersprüche stoßen könnte, daß die Interpretation der Erfahrungen immer noch genügend Willkür enthielte, um dieses Prinzip festzuhalten. Aber so ist die Frage falsch gestellt. Es handelt sich nicht darum, ob ein einzelnes Prinzip festgehalten werden kann, sondern ob das ganze System der Prinzipien sich immer festhalten läßt. Denn die Erkenntnis fordert ein System, und kann mit einem einzelnen Prinzip nicht auskommen; und auch die Kantische Philosophie hat ein System aufgestellt. Daß man mit einem einzelnen Prinzip immer durchkommen kann, erscheint wahrscheinlich, wenn auch noch keineswegs sicher. Denn ein Prinzip enthält unter Umständen einen Komplex von Gedanken, und ist dann bereits einem System gleichwertig; es ließe sich schwer beweisen, daß ein Prinzip immer einem unvollständigen System äquivalent ist.
Auf jeden Fall müssen wir aber den Zufall ausschließen; denn daß zwischen Wirklichkeit und Vernunft eine prästabilierte Harmonie besteht, darf nicht Voraussetzung einer wissenschaftlichen Erkenntnistheorie werden. Wenn deshalb das Prinzipiensystem der Vernunft zur Klasse der eindeutig bestimmenden Systeme oder zu der der unvollständigen Systeme gehören soll, so darf es keine implizit widerspruchsvollen (überbestimmenden) Systeme für die Erkenntnis geben.
Wir sind damit zu dem Resultat gekommen, daß wir die Geltung der Kantischen Erkenntnislehre von der Geltung einer klar formulierten Hypothese abhängig machen können. Kants Theorie enthält die Hypothese, daß es keine implizit widerspruchsvollen Systeme von Zuordnungsprinzipien für die Erkenntnis der Wirklichkeit gibt. Da diese Hypothese gleichbedeutend ist mit der Aussage, daß man mit jedem beliebigen, explizit widerspruchsfreien System von Zuordnungsprinzipien zu einer eindeutigen Zuordnung von Gleichungen zur Wirklichkeit kommen kann, wollen wir sie als Hypothese der Zuordnungswillkür bezeichnen. Nur wenn sie richtig ist, sind die beiden Bedeutungen des Apriori-Begriffes miteinander vereinbar; denn nur dann sind die konstitutiven Prinzipien unabhängig von der Erfahrung und dürfen apodiktisch, für alle Zeiten gültig, genannt werden. Wir wollen untersuchen, welche Antwort die Relativitätstheorie auf diese Frage gibt.