VIII. Der Erkenntnisbegriff der Relativitätstheorie als Beispiel der Entwicklung des Gegenstandsbegriffes.
Wenn wir zu dem Resultat kommen, daß die aprioren Prinzipien der Erkenntnis nur auf induktivem Wege bestimmbar sind, und jederzeit durch Erfahrungen bestätigt oder widerlegt werden können, so bedeutet das allerdings einen Bruch mit der bisherigen kritischen Philosophie. Aber wir wollen zeigen, daß sich diese Auffassung ebensosehr von der empiristischen Philosophie unterscheidet, die glaubt, alle wissenschaftlichen Sätze in einerlei Weise mit der Bemerkung „alles ist Erfahrung“ abtun zu können. Diese Philosophie hat den großen Unterschied nicht gesehen, der zwischen physikalischen Einzelgesetzen und Zuordnungsprinzipien besteht, und sie ahnt nicht, daß die letzteren für den logischen Aufbau der Erkenntnis eine ganz andere Stellung haben als die ersteren. In diese Erkenntnis hat sich die Lehre vom Apriori verwandelt: daß der logische Aufbau der Erkenntnis durch eine besondere Klasse von Prinzipien bestimmt wird, und daß eben diese logische Funktion der Klasse eine Sonderstellung gibt, deren Bedeutung mit der Art der Entdeckung dieser Prinzipien und ihrer Geltungsdauer nichts zu tun hat.
Wir sehen keinen besseren Weg, diese Sonderstellung zu veranschaulichen, als indem wir die Veränderung des Gegenstandsbegriffs beschreiben, die mit der Änderung der Zuordnungsprinzipien durch die Relativitätstheorie vollzogen wurde.
Die Physik gelangt zu quantitativen Aussagen, indem sie den Einfluß physikalischer Faktoren auf Längen- und Zeitbestimmungen untersucht; die Messung von Längen und Zeiten ist der Ausgangspunkt aller ihrer Quantitätsbestimmungen. So konstatiert sie das Auftreten von Gravitationskräften an der Zeit, die ein frei fallender Körper für das Durchlaufen einzelner Wegstrecken braucht, oder sie mißt eine Temperaturerhöhung durch die veränderte Länge eines Quecksilberfadens. Dazu muß definiert sein, was eine Längen- oder Zeitstrecke ist; die Physik versteht darunter die Verhältniszahl, welche die zu messende Strecke mit einer als Einheit festgesetzten gleichartigen Strecke verbindet. Jedoch benutzte die alte Physik dabei noch eine wesentliche Voraussetzung: daß Längen und Zeiten voneinander unabhängig sind, daß die für ein System definierte synchrone Zeit keinerlei Einfluß hat auf die Ergebnisse der Längenmessung. Um von den gemessenen Längen zu verbindenden Relationen zu kommen, muß ferner noch ein System von Regeln für die Verbindung von Längen gegeben sein; dazu dienten in der alten Physik die Sätze der euklidischen Geometrie. Denken wir uns etwa eine rotierende Kugel; sie erfährt nach der Newtonschen Theorie eine Abplattung. Der Einfluß der Rotation, also einer physikalischen Ursache, macht sich in der Änderung der geometrischen Dimensionen geltend. Trotzdem wird dadurch an den Regeln der Verbindung der Längen nichts geändert; so gilt auch auf der abgeplatteten Kugel der Satz, daß das Verhältnis aus Umfang und Durchmesser eines Kreises (z. B. eines Breitenkreises) gleich π ist, oder der Satz, daß bei genügender Kleinheit ein Bogenstück zu den Koordinatendifferentialen in der pythagoräischen Beziehung steht (und zwar bei ganz beliebig gewählten orthogonalen Koordinaten für alle kleinen Bogenstücke). Derartige Voraussetzungen mußte die Physik machen, wenn sie überhaupt Änderungen von Längen und Zeiten messen wollte. Es war eine notwendige Eigenschaft des physikalischen Körpers, daß er sich diesen allgemeinen Relationen fügte; nur unter dieser Voraussetzung konnte ein Etwas als physikalisches Ding gedacht werden, und quantitative Erkenntnis gewinnen, hieß weiter nichts, als diese allgemeinen Regeln auf die Wirklichkeit anwenden und nach ihnen die Messungszahlen in ein System ordnen. Diese Regeln gehörten zum Gegenstandsbegriff der Physik.
Als die Relativitätstheorie diese Auffassung änderte, entstanden ernste begriffliche Schwierigkeiten. Denn diese Theorie lehrte, daß die gemessenen Längen und Zeiten keine absolute Geltung besitzen, sondern noch ein akzidentelles Moment enthalten: das gewählte Bezugssystem, und daß ein bewegter Körper gegenüber dem ruhenden eine Verkürzung erfährt. Man sah darin einen Widerspruch zum Kausalitätsprinzip, denn man konnte keine Ursache für diese Verkürzung angeben; man stand plötzlich vor einer physikalischen Veränderung, für deren Verursachung alle Vorstellungen von durch die Bewegung erzeugten Kräften versagten. Noch in allerletzter Zeit hat Helge Holst[28] den Versuch gemacht, das Kausalprinzip dadurch zu retten, daß er entgegen der Einsteinschen Relativität ein bevorzugtes Koordinatensystem aufzeigt, in dem die gemessenen Größen allein einen objektiven Sinn haben sollen, während die Lorentzverkürzung als verursacht durch die Bewegung relativ zu diesem System erscheint. Die Einsteinsche Relativität erscheint dabei als eine elegante Transformationsmöglichkeit, die auf einem großen Zufall der Natur beruht.
Wir müssen bemerken, daß die scheinbare Schwierigkeit nicht durch die Aufrechterhaltung der Kausalforderung entsteht, sondern durch die Aufrechterhaltung eines Gegenstandsbegriffs, den die Relativitätstheorie bereits überwunden hatte. Für die Längenverkürzung ist eine konstatierbare Ursache vorhanden: die Relativbewegung der beiden Körper. Allerdings kann man, je nachdem man das Bezugssystem mit dem einen oder dem anderen Körper ruhen läßt, sowohl den einen wie den anderen als kürzer bezeichnen. Wenn man aber darin einen Widerspruch zum Kausalprinzip sieht, weil dieses fordern müßte, welcher der Körper die Verkürzung „wirklich“ erfährt, so setzt man damit voraus, daß die Länge eine absolute Eigenschaft des Körpers ist; aber Einstein hatte gerade gezeigt, daß die Länge nur in bezug auf ein bestimmtes Koordinatensystem überhaupt eine definierte Größe ist. Zwischen einem bewegten Körper und einem Maßstab (der natürlich ebenfalls als Körper gedacht werden muß) besteht eine Relation, aber diese drückt sich je nach dem gewählten Bezugssystem bald als Ruhlänge, bald als Lorentzverkürzung oder -verlängerung aus. Das, was wir als Länge messen, ist nicht die Relation zwischen den Körpern, sondern nur ihre Projektion in ein Koordinatensystem. Allerdings können wir sie formulieren nur in der Sprache eines Koordinatensystems, aber indem wir gleichzeitig die Transformationsformeln auf jedes andere System angeben, erhält unsere Aussage einen unabhängigen Sinn. Darin besteht die neue Methode der Relativitätstheorie: daß sie durch die Angabe der Transformationsformeln den subjektiven Aussagen einen objektiven Sinn verleiht. Damit verschiebt sie den Begriff der realen Relation. Konstatierbar, und darum auch objektiv zu nennen, ist immer nur die in irgend einem System gemessene Länge. Aber sie ist nur ein Ausdruck der realen Relation. Das, was früher als geometrische Länge angesehen wurde, ist keine absolute Eigenschaft des Körpers, sondern gleichsam nur eine Spiegelung der zugrundeliegenden Eigenschaft in die Darstellung eines einzigen Koordinatensystems. Das soll keine Versetzung des Realen in ein Ding an sich bedeuten, denn wir können ja die reale Relation eindeutig formulieren, indem wir die Länge in einem Koordinatensystem und außerdem die Transformationsformeln angeben; aber wir müssen uns daran gewöhnen, daß man die reale Relation nicht einfach als eine Verhältniszahl formulieren kann.
Wir bemerken die Veränderung des Gegenstandsbegriffs: was früher eine Eigenschaft des Dinges war, wird jetzt zu einer Resultierenden aus Ding und Bezugssystem; nur indem wir die Transformationsformeln angeben, eliminieren wir den Einfluß des Bezugssystems, und allein auf diesem Wege kommen wir zu einer Bestimmung des Realen.
Bedeutet insofern der Einsteinsche Längenbegriff eine Verengerung, weil er nur eine Seite der zugrundeliegenden realen Relation formuliert, so erhält er doch im anderen Sinne durch die Relativitätstheorie eine wesentliche Erweiterung. Denn weil der Bewegungszustand der Körper ihre reale Länge ändert, wird die Länge umgekehrt zu einem Ausdruck dieses Bewegungszustandes. Anstatt zu sagen: die zwei Körper bewegen sich gegeneinander, kann ich auch sagen: der eine erfährt, vom anderen gesehen, eine Lorentzverkürzung. Beide Aussagen sind nur ein verschiedener Ausdruck für ein und dieselbe zugrundeliegende Tatsache. Und wir bemerken wieder, daß sich eine physikalische Tatsache nicht immer durch eine einfache kinematische Aussage ausdrücken läßt, sondern erst durch zwei verschiedene Aussagen und ihre Transformation ineinander hinreichend beschrieben wird.
Diese erweiterte Funktion der Metrik, die sie zur Charakterisierung eines physikalischen Zustandes macht, ist in der allgemeinen Relativitätstheorie in noch viel höherem Grade ausgebildet worden. Nach dieser Theorie führt nicht nur die gleichförmige, sondern auch die beschleunigte Bewegung zur Änderung der metrischen Verhältnisse, und deshalb läßt sich umgekehrt auch der Zustand der beschleunigten Bewegung durch metrische Aussagen charakterisieren. Aber das führt zu Konsequenzen, die die spezielle Relativitätstheorie noch nicht ahnen ließ. Denn die beschleunigte Bewegung ist mit dem Auftreten von Gravitationskräften verbunden, und deshalb wird nach dieser Erweiterung auch das Auftreten physikalischer Kräfte durch eine metrische Aussage ausgedrückt. Der Begriff der Kraft, der der alten Physik so viel logische Schwierigkeiten gemacht hatte, erscheint plötzlich in ganz neuem Licht: er ist nur die eine anthropomorphe Seite eines realen Zustands, dessen andere Seite eine spezielle Form der Metrik ist. Allerdings läßt sich bei einer solchen Erweiterung der metrischen Funktion ihre einfache euklidische Form nicht mehr aufrecht erhalten, und nur die Riemannsche analytische Metrik ist imstande, solchen Umfang der Bedeutung in sich aufzunehmen. Anstatt zu sagen: ein Himmelskörper nähert sich einem Gravitationsfeld, kann ich auch sagen: die metrischen Dimensionen dieses Körpers werden krumm. Wir sind gewöhnt, das Auftreten von Kräften an dem Widerstande zu spüren, den sie der Bewegung entgegensetzen. Wir können ebensogut sagen: das Reale, was wir auch Kraftfeld nennen, drückt sich in der Tatsache aus, daß die geradlinige Bewegung unmöglich ist. Denn das ist ja der Sinn der Einstein-Riemannschen Raumkrümmung, daß sie die Existenz von geraden Linien unmöglich macht. Das „unmöglich“ ist hier nicht technisch aufzufassen, etwa so, als ob nur jede technische Realisierung einer geraden Linie durch physikalische Stäbe unmöglich wäre, sondern begrifflich; auch die gedachte gerade Linie ist im Riemannschen Raum unmöglich. In seiner Anwendung auf die Physik bedeutet dies, daß es keinen Sinn hat, nach der Annäherung einer geraden Linie durch physikalische Stäbe zu suchen; auch die Annäherung ist unmöglich. Auch die alte Physik führt zu dem Resultat, daß ein Himmelskörper, der in ein Gravitationsfeld eintritt, eine krummlinige Bahn annimmt. Aber die Relativitätstheorie behauptet vielmehr: daß es überhaupt keinen Sinn hat, in einem Gravitationsfeld von geraden Bahnen zu sprechen. Ihre Aussage ist physikalisch von der alten Auffassung durchaus verschieden. Die Bahn der Einsteinschen Theorie verhält sich zur Newtonschen Bahn wie eine Raumkurve zu einer ebenen Kurve, die Einsteinsche Krümmung ist von höherer Ordnung als die Newtonsche. Daß eine so tiefe Änderung der Metrik erfolgen mußte, hängt mit der Erweiterung ihrer Bedeutung zusammen, die sie zum Ausdruck eines physikalischen Zustands macht.
Die alte Auffassung, daß die metrischen Verhältnisse eines Körpers — die Art, wie sich seine Größe und Länge, der Winkel seiner Kanten, die Krümmung seiner Flächen aus Messungsdaten berechnen — von der Natur unabhängig seien, läßt sich nicht mehr aufrecht erhalten. Diese metrischen Regeln sind abhängig geworden von der gesamten umgebenden Körperwelt. Was man früher ein Rechenverfahren der Vernunft genannt hatte, ist jetzt eine spezielle Eigenschaft des Dinges und seiner Einbettung in die Gesamtheit der Körper. Die Metrik ist kein Zuordnungsaxiom mehr, sondern ein Verknüpfungsaxiom geworden. Darin liegt eine noch viel tiefere Verschiebung des Begriffs vom Realen, als sie die spezielle Relativitätstheorie gelehrt hatte. Wir sind gewöhnt, die Materie aufzufassen als etwas Hartes, Festes, das wir mit dem Tastsinn als Widerstand fühlen. Auf diesem Begriff der Materie beruhen alle Theorien einer mechanischen Welterklärung, und es ist bezeichnend, daß in ihnen immer wieder der Versuch gemacht wurde, den Zusammenstoß fester Körper als Urbild jeder Kraftwirkung durchzuführen. Man muß mit diesem Vorbild endgültig gebrochen haben, wenn man den Sinn der Relativitätstheorie erfassen will. Was der Physiker seinen Beobachtungen zugrunde legt, sind Messungen von Längen und Zeiten, und keine Tastwiderstände. Darum kann sich auch nur in der Längen- und Zeitmessung die Anwesenheit von Materie ausdrücken. Daß etwas Reales, eine Substanz, da ist, drückt sich physikalisch in der speziellen Form der Verbindung dieser Längen und Zeiten, in der Metrik aus; real ist das, was durch die Raumkrümmung beschrieben wird. Und wir bemerken abermals eine neue Methode der Beschreibung: das Reale wird nicht mehr durch ein Ding beschrieben, sondern durch eine Reihe von Relationen zwischen den geometrischen Dimensionen. Gewiß enthält die Metrik noch ein subjektives Element, und je nach der Wahl des Bezugssystems werden auch die metrischen Koeffizienten verschieden sein; diese Unbestimmtheit gilt auch noch im Gravitationsfeld. Aber es bestehen Abhängigkeitsrelationen zwischen den metrischen Koeffizienten, und wenn man 4 von ihnen für den ganzen Raum beliebig vorgibt, sind die anderen 6 durch Transformationsformeln bestimmt. In dieser einschränkenden Bedingung drückt sich die Anwesenheit von Materie aus; dies ist die begriffliche Form, das materiell Seiende zu definieren. Im leeren Raum würden die einschränkenden Bedingungen fortfallen; aber damit wird auch die Metrik unbestimmt; es hat keinen Sinn, von Längenbeziehungen im leeren Raum zu reden. Nur die Körper haben Längen und Breiten und Höhen — aber dann muß sich in den metrischen Verhältnissen auch der Zustand der Körper ausdrücken.
Damit ist der alte auch noch von Kant benutzte Begriff der Substanz aufgegeben, nach dem die Substanz ein metaphysischer Urgrund der Dinge war, von dem man immer nur die Veränderungen beobachten konnte. Zwischen dem Ausspruch des Thales von Milet, daß das Wasser der Urgrund aller Dinge sei, und diesem alten Substanzbegriff besteht erkenntnistheoretisch genommen gar kein Unterschied, nur daß an Stelle des Wassers eine spätere Physik den Wasserstoff oder das Heliumatom oder das Elektron setzte. Die fortschreitenden physikalischen Entdeckungen konnten nicht den erkenntnistheoretischen Begriff, nur seine spezielle Ausfüllung ändern. Erst die Einsteinsche Änderung der Zuordnungsprinzipien ging auf den Begriff des Seienden. An diese Theorie darf man nicht mit der Frage herantreten: Welches ist denn nun eigentlich das Seiende? Ist es das Elektron? Ist es die Strahlung? Diese Fragestellung schließt den alten Substanzbegriff ein, und erwartet nur seine neue Ausfüllung. Daß etwas ist, drückt sich in den Abhängigkeitsrelationen zwischen den metrischen Koeffizienten aus; da wir diese durch Messung feststellen können — und nur deswegen — ist das Seiende für uns konstatierbar. Daß die Metrik viel mehr ist als eine mathematische Ausmessung der Körper, daß sie die Form ist, den Körper als Element in der materiellen Welt zu beschreiben — das ist der Sinn der allgemeinen Relativitätstheorie[F].
[F] Es ist kein Widerspruch hierzu, wenn in der physikalischen Praxis immer noch der alte Substanzbegriff benutzt wird. Neuerdings hat Rutherford eine Theorie entwickelt, in der er über den Zerfall des positiven Stickstoffkerns in Wasserstoff- und Heliumkerne berichtet. Diese überaus fruchtbare physikalische Entdeckung darf den alten Substanzbegriff voraussetzen, weil dieser sich mit hinreichender Näherung für die Beschreibung der Wirklichkeit eignet, und Rutherfords Arbeiten schließen nicht aus, daß man sich den inneren Aufbau der Elektronen im Einsteinschen Sinne denkt. Diese Fortdauer alter Begriffe für die wissenschaftliche Praxis dürfen wir einem bekannten Fall der Astronomie vergleichen: Obwohl man seit Kopernikus weiß, daß die Erde nicht im Mittelpunkt des kugelförmig und rotierend gedachten Himmelsgewölbes steht, dient diese Auffassung heute noch als Grundlage der astronomischen Meßtechnik.
Es ist nur eine Konsequenz dieser Auffassung, wenn die Grenzen zwischen materiellem Körper und Umgebung nicht scharf definiert sind. Der Raum ist ausgefüllt von dem Feld, das seine Metrik bestimmt; es sind nur Verdichtungen dieses Feldes, was wir bisher als Materie bezeichneten. Es hat keinen Sinn, von einer Wanderung materieller Teile als einem Transport von Dingen zu reden; was stattfindet, ist ein fortschreitender Verdichtungsprozeß, der eher der Wanderung einer Wasserwelle verglichen werden muß[G]. Der Begriff des Einzeldings verliert jede Bestimmtheit. Man kann beliebig abgegrenzte Gebiete des Feldes herausgreifend betrachten, aber sie sind nicht anders zu charakterisieren als durch die speziellen Werte allgemeiner Raum-Zeit-Funktionen in diesem Gebiet. Wie ein Differentialgebiet einer analytischen Funktion im komplexen Bereich den Verlauf der Funktion für den ganzen unendlichen Bereich charakterisiert, so charakterisiert auch jedes Teilgebiet das gesamte Feld, und man kann seine metrischen Bestimmungen nicht angeben, ohne zugleich das gesamte Feld mit zu beschreiben. So löst sich das Einzelding in den Begriff des Feldes auf, und mit ihm verschwinden die Kräfte zwischen den Dingen; an Stelle der Physik der Kräfte und Dinge tritt die Physik der Feldzustände.
[G] Allerdings nur als eine grobe Analogie. Denn man pflegt sonst umgekehrt den „scheinbaren“ Lauf einer Wasserwelle auf die „wirkliche“ Hin- und Herbewegung der Wasserteilchen zurückzuführen. Einzelne Teilchen als Träger des Feldzustandes gibt es aber nicht. Vgl. für diese Auffassung der Materie auch die in diesem Punkt erkenntnislogisch sehr tiefgehenden Ausführungen bei Weyl, Anmerkung 21, S. 162.
Wir geben diese Schilderung des Gegenstandsbegriffs der Relativitätstheorie — die keineswegs den Anspruch macht, den erkenntnislogischen Gehalt dieser Theorie zu erschöpfen — um die Bedeutung konstitutiver Prinzipien zu zeigen. Im Gegensatz zu den Einzelgesetzen sagen sie nicht, was im einzelnen Fall erkannt wird, sondern wie erkannt wird, sie definieren das Erkennbare, sie sagen, was Erkenntnis ihrem logischen Sinne nach bedeutet. Insofern sind sie die Antwort auf die kritische Frage: wie ist Erkenntnis möglich? Denn indem sie definieren, was Erkenntnis ist, zeigen sie die Ordnungsregeln, nach denen sich der Erkenntnisvorgang vollzieht, und nennen die Bedingungen, deren logische Befolgung zu Erkenntnissen führt; in diesem logischen Sinne ist das „möglich“ jener Frage zu verstehen. Und wir begreifen, daß die heutigen Bedingungen der Erkenntnis nicht mehr dieselben sein können wie bei Kant: weil sich der Begriff der Erkenntnis geändert hat, und der veränderte Gegenstand der physikalischen Erkenntnis auch andere logische Bedingungen voraussetzt. Diese Änderung konnte nur in Berührung mit der Erfahrung erfolgen, und daher sind auch die Prinzipien der Erkenntnis durch die Erfahrung bestimmt. Aber ihre Geltung beruht nicht nur auf dem Urteil einzelner Erfahrungen, sondern auf der Möglichkeit des ganzen Systems der Erkenntnis: das ist der Sinn des Apriori. Daß wir die Wirklichkeit durch metrische Relationen zwischen vier Koordinaten beschreiben können, ist so gewiss wie die Geltung der gesamten Physik; nur die spezielle Gestalt dieser Regeln ist zu einem Problem der empirischen Physik geworden. Dieses Prinzip bildet die Basis für die begriffliche Auffassung der physikalischen Wirklichkeit. Jede bisherige physikalische Erfahrung, die überhaupt gemacht wurde, hat das Prinzip bestätigt. Aber das schließt nicht aus, daß sich eines Tags Erfahrungen einstellen, die wieder zu einer stetigen Erweiterung zwingen — dann wird die Physik abermals ihren Gegenstandsbegriff ändern müssen, und der Erkenntnis neue Prinzipien voranstellen. Apriori bedeutet: vor der Erkenntnis, aber nicht: für alle Zeit, und nicht: unabhängig von der Erfahrung.
* *
*
Wir wollen diese Untersuchung nicht beschließen, ohne dasjenige Problem gestreift zu haben, das gewöhnlich in den Brennpunkt der Relativitätsdiskussion gestellt wird: die Vorstellbarkeit des Riemannschen Raums. Wir müssen allerdings betonen, daß die Frage der Evidenz apriorer Prinzipien in die Psychologie gehört, und es ist sicherlich ein psychologisches Problem, weshalb der euklidische Raum jene eigentümliche Evidenz besitzt, die zu einer anschaulichen Selbstverständlichkeit seiner sämtlichen Axiome führt. Mit dem Schlagwort „Gewöhnung“ läßt sich dies nicht abtun, denn es handelt sich hier gar nicht um ausgefahrene Assoziationsketten, sondern um eine ganz besondere psychische Funktion, und gerade weil der Sehraum Verhältnisse aufweist, die von den euklidischen abweichen, ist jene Evidenz um so merkwürdiger, die uns etwa die Gerade als kürzeste Verbindung zweier Punkte erkennen läßt. Dieses psychologische Phänomen ist noch vollkommen unerklärt.
Aber wir können, ausgehend von dem entwickelten Erkenntnisbegriff, einige grundsätzliche Bemerkungen zu dem Problem machen. Wir konnten nachweisen, daß nach diesem Erkenntnisbegriff der Metrik eine ganz andere Funktion zukommt als bisher, daß sie nicht Abbilder der Körper liefert im Sinne einer geometrischen Ähnlichkeit, sondern der Ausdruck ihres physikalischen Zustands ist. Es scheint mir psychologisch einleuchtend zu sein, daß wir für diesen viel tiefergehenden Zweck die in uns liegenden geometrischen Bilder nicht verwenden können. Was uns an die euklidische Geometrie so fesselt, und sie so zwingend erscheinen läßt, ist die Vorstellung, daß wir mit dieser Geometrie zu Bildern der wirklichen Dinge kommen können. Wenn es aber klar geworden ist, daß Erkenntnis etwas völlig anderes ist, als die Herstellung solcher Bilder, daß die metrische Relation einen ganz anderen Sinn hat, als die Abbildung in ähnliche Figuren, dann werden wir auch nicht mehr den Versuch machen, die euklidische Geometrie auf die Wirklichkeit als notwendige Form anzuwenden.
Als im 15. Jahrhundert die Ansicht sich durchsetzte, daß die Erde eine Kugel sei, stieß sie zuerst auf großen Widerspruch, und gewiß ist ihr der Einwand gemacht worden: es ist anschaulich unvorstellbar. Auch brauchte man sich ja nur in der räumlichen Umgebung umzusehen, um festzustellen, daß die Erde keine Kugel sei. Später hat man diesen Einwand aufgegeben, und heute ist es jedem Schulkind selbstverständlich, daß die Erde eine Kugel ist. Dabei war der Einwand in Wahrheit vollkommen richtig. Es ist auch gar nicht vorstellbar, daß die Erde eine Kugel ist. Wenn wir den Versuch machen, diese Vorstellung zu vollziehen, so denken wir uns sogleich eine kleine Kugel, und darauf, mit den Füßen an der Oberfläche, mit dem Kopf hinausragend, einen Menschen. Aber in den Dimensionen der Erde können wir diese Vorstellung gar nicht vollziehen; jene Merkwürdigkeit, daß die Kugel gleichzeitig für Gebiete unserer Sehweite einer Ebene gleichwertig ist, die doch erst die sämtlichen beobachteten Erscheinungen auf der Erde erklärt, können wir nicht vorstellen. Eine Kugel von der geringen Krümmung der Erdoberfläche liegt außerhalb unserer Vorstellungsmöglichkeit. Wir können diese Kugel nur durch eine Reihe sehr kümmerlicher Analogien irgendwie begreiflich machen. Wenn wir jetzt behaupten, wir konnten die Erde als Kugel vorstellen, so heißt das in Wahrheit: wir haben uns daran gewöhnt, auf die anschauliche Vorstellbarkeit zu verzichten, und uns mit einer Reihe von Analogien zu begnügen.
Genau so, glaube ich, steht es mit dem Riemannschen Raum. Es wird von der Relativitätstheorie gar nicht behauptet, daß das, was früher das geometrische Bild der Dinge war, nun plötzlich im Riemannschen Sinne krumm ist. Vielmehr wird behauptet, daß es ein solches Abbild nicht gibt, und daß mit den Relationen der Metrik etwas ganz anderes ausgedrückt wird, als eine Wiederholung des Gegenstandes. Daß für die Charakterisierung eines physikalischen Zustandes die in uns liegenden geometrischen Bilder nicht ausreichen, erscheint eigentlich selbstverständlich. Wir brauchen uns nur daran zu gewöhnen, nicht daß die Bilder falsch seien, aber daß sie auf die wirklichen Dinge nicht angewandt werden können — dann haben wir das gleiche vollzogen, wie bei der sogenannten Vorstellbarkeit der Erdkugel, nämlich auf die anschauliche Vorstellbarkeit endgültig verzichtet. Dann werden wir uns mit Analogien begnügen, wie der sehr schönen Analogie von dem zweidimensional denkenden Wesen auf der Kugelfläche, und glauben, daß sie die Physik vorstellbar machen.
Es muß Aufgabe der Psychologie bleiben, zu erklären, warum wir die Bilder und Analogien für die Erkenntnis so nötig haben, daß wir ohne sie das begriffliche Erfassen gar nicht vollziehen können. Aufgabe der Erkenntnistheorie ist es, zu erklären, worin die Erkenntnis besteht; daß wir dies durch eine Analyse der positiven Erkenntnisse tun müssen, ohne Rücksicht auf die Bilder und Analogien, glaubt die vorliegende Untersuchung aufgezeigt zu haben.