CHAPTER X

In 1903, Mr. Ernest Archdeacon stimulated by a conference with Mr. Chanute, at a meeting of the Aëro Club of France, founded a prize of 3,000 francs to be awarded to the first person who should sail or fly 25 meters, with a maximum descent not exceeding one third of the range. As yet no one in either hemisphere had flown in a practical machine, but various aviators were industriously pluming their wings. Captain Ferber had been a follower of Lilienthal since 1898, and a pupil of Mr. Chanute since 1891. Dozens of votaries in France, not to mention other countries, had entered, or were about to enter, the aviation field. Archdeacon himself, Voisin, Blériot, Esnault-Pélterie, Vuia, Delagrange, Tatin, Cornu, Bazin, Levavasseur and many others, were stanch apostles of the heavier than air. Many of these were disciples of Lilienthal, but they were destined all to be distanced by an impetuous Hensonite, who could not realize the necessity for spending months, or years, cautiously coasting downhill to acquire the adroitness requisite to speed a flying chariot over the plain.

In 1906, while many aviators in Europe were developing flyers, and cautiously testing them in various ways, by gliding above sand or water, or swinging from a high wire or traveling arm, Señor Alberto Santos-Dumont, of Brazil, brought forth in France the quaint and crude biplane shown in [Plate XXII]. Aërodynamically this was not a great improvement on the aëroplane of Sir George Cayley constructed 98 years earlier; but it had a petrol motor whose power and lightness would have astounded that talented pioneer in aviation. The motor was an eight-cylinder Antoinette, weighing 170 pounds and developing 50 horse power. The screw, formed of two aluminum blades, was of two meters diameter, one meter pitch, mounted on the engine shaft, and, at 1,500 revolutions a minute, gave a thrust of 330 pounds. The total lifting surface of the aëroplane was 650 square feet, and the weight, including pilot, 645 pounds. This bird-shaped craft ran tail foremost through the air, having the screw at the rear, and the rider in a small basket just before the wings. By means of a pilot-wheel and lever, he could operate the “tail,” i. e., the front rudder, sidewise and vertically, thus steering the craft in two directions. The lateral balance was preserved automatically by means of the dihedral inclination of the wings, aided sometimes by the rider swaying his weight to right or left.

After some days of preliminary adjustment and trial, Santos-Dumont was ready for a dash in his new aëromobile. On August 22d, 1906, he made a brief tentative flight, the first witnessed in Europe since Ader’s surreptitious experiment. On October 23d, he ran this strange machine swiftly over the ground and glided boldly into the air, flying above the excited spectators at a speed of 25 miles an hour, and covering a distance of 200 feet, thus gaining the Archdeacon cup. Again on November 12th, 1906, he made four flights, the last one covering 220 meters in twenty-one seconds, thus gaining the prize of 1,500 francs offered by the Aëro Club of France for the first person who should fly 100 meters. The demonstration was made before the general public and technical witnesses, including an official committee of the Aëro Club of France, who reported that the aëroplane preserved good balance and a true soaring speed independent of the acquired momentum.

Intrinsically the achievements of November 12th were crude and primitive; but in moral effect they were very important. They marked the inception of public aëroplaning before the professional and lay world alike. There was no patent mechanism to conceal, no secret to withhold from rivals, such as had shrouded the work of more circumspect aviators in Europe and America. If Santos-Dumont was not the first to fly, he was the first aëroplane inventor to give his art to the world, and to inaugurate true public flying in presence of technical men, as he had initiated modern motor ballooning. His liberal enthusiasm and that of his colleagues, both aëroplanists and patrons, quickly made France the world’s foremost theater of aviation, at least for the moment. The contagion would of course spread swiftly, and involve the entire civilized world.

Santos-Dumont’s unconventional dash into the air sounded the knell of Lilienthalism. This slow method served to pass time profitably in the nineties, while the gasoline motor was still developing. But with an Antoinette in hand, what live man, particularly what live Frenchman, could tinker long years on the sand hills? Why not mount the craft on little wheels and take a cautious little run; then after some adjustment, make more runs followed by innocuous saltatory flights? This would be so easy, so fascinating, so instructive. How much better than to make two thousand preliminary jumps down the hill slope with the body dangling wildly to keep the balance, then to redesign the entire frame before an engine could be successfully applied! An Antoinette motor, placed on a competently designed Henson aëroplane, would have obviated the whole Lilienthal school. However, they did noble and opportune work, while awaiting the growth of the gasoline engine. This school achieved success by a roundabout method because Henson’s method was not available till the present century, for want of a cheap, light motor. When that appeared Lilienthalism quickly subsided. In other words, Lilienthal’s method was a passing convenience, never a necessity. It could have been employed very profitably in Cayley’s time to develop the art of gliding and soaring; but in the time of Santos-Dumont and his colleagues, flying by Henson’s method would have burst upon the world by reason of its superior value and the allied progress, even if the Lilienthal school had never existed. This is illustrated by the fact that Santos-Dumont succeeded without aid from the sand-hill votaries.


PLATE XXII.

SANTOS-DUMONT’S BIPLANE.

Photo E. Levick, N. Y.

SANTOS-DUMONT’S DEMOISELLE.

(Courtesy A. J. Moisant.)

The next daring aëroplanist to arouse the world of aviation was Henri Farman, also a votary of the wheel-mounted flyer. He had been an adept motorist, therefore accustomed to brisk driving. In the summer of 1907 he received from the Voisin brothers the aëroplane illustrated in [Plate XXIII]. With this he made a number of preliminary flights during the autumn, proving that his aëroplane had suitable stability and motive power. On October 26th, on the government drill grounds at Issy-les-Moulineaux he surpassed Santos-Dumont’s record, by flying 771 meters. But this was to him of minor importance; he was preparing to win the Deutsch-Archdeacon prize of 50,000 francs offered for the first person who should fly one kilometer over a returning course. On January 12th, he convoked a committee of the Aëro Club of France to witness a trial on the morrow. Next morning at ten o’clock, the weather being calm and clear, his great machine ran a hundred yards across the course, then rose gracefully into the air, and sailed away for the 500-meter post. Here, making a wide curve, it rounded safely and returned, passing the home line in elegant flight, thus winning the grand prize.

The machine with which Farman achieved his first success, and which broadly resembles his subsequent triumphal flyers, seems to be a cross between a Hargrave kite and a Chanute glider, having a Maxim horizontal steering plane in front. As shown in the figure it was mounted on four bicycle wheels; was steered up and down by the front plane, and sidewise by the box rudder seen in the rear. The rider seated between the large supporting surfaces, and in front of his engine, operated these rudders separately, by pushing or rotating a pilot wheel, and abetted the automatic lateral balance by swaying his body. The machine spread 559 square feet of sustaining surface, weighed 1,100 pounds and carried a 50-horse-power Antoinette motor actuating a single two-blade aluminum propeller 6.9 feet in diameter by 3.6 feet pitch, directly connected to the engine shaft. The stability in mild weather was so great that Farman, during his first few weeks’ practice, made over 200 flights, measuring in length from 100 to 500 yards, without serious mishap. In gusty weather, however, his machine was defective in steadiness, and unsafe near the ground. This objection was remedied later by adding flexible wing margins for controlling the lateral balance.

The age of prize flying was thus fairly ushered in by the feeble but very important public demonstrations of Santos-Dumont and Henri Farman. Other public flyers would quickly follow. Delagrange, Blériot, Curtiss would soon become international figures, not to mention numerous more recent aviators. They, were men of originality, skill and energy, who would shortly be in the front line contesting for world laurels, and winning them gloriously.


PLATE XXIII.

FARMAN BIPLANE, 1908.

(Courtesy W. J. Hammer.)

FARMAN BIPLANE, 1909.

HARMON IN FARMAN BIPLANE.

Leon Delagrange, the sculptor-inventor, who first had demonstrated the biplane, on March 30, 1907, aspired in 1908 to outfly Farman. He now practiced industriously on the military drill ground at Issy-les-Moulineaux, a large field which the Minister of War permitted the Aëro Club of France to use for such purpose. Here he and Farman, in friendly competition, flew day by day over gradually increasing courses. At times they were joined by other aviators, and thus the drill grounds at Issy became famous as an aviation school.

Farman’s new rival made startling progress during those frequent trials of March, 1908. “Just imagine,” he says, “that within a week I was able to complete my education as an aviator.” On March 17th he made an official flight of 269.6 meters, thus winning a prize of 200 francs offered by the Aëro Club of France for a beginner who should fly over 200 meters. Four days later he engaged in contest with Farman. Two poles were erected 500 meters apart to mark the points about which the men must race. The machines were brought forth from their sheds in the morning, gleaming dimly through a dense fog, and were given some preliminary trials. Then Farman made a flight of 2004.8 meters, going twice around the course in 3 minutes, 31 seconds. He thus trebled his grand prize flight of January. Presently Delagrange took wing and flew 1,500 meters in 2.5 minutes. Having been beaten by Farman, he invited his successful rival to take a seat behind him, and the two sailed away close to the ground, covering a distance of 50 meters. This was the first trip ever made by two men in one flying machine. For the first time also two machines had flown in competition over a considerable course.

Delagrange continued to pursue Farman for the championship. On April 11th, he flew 2,500 meters, and would have exceeded Farman’s official record of 2,004 meters, had he not touched the ground. The next day he summoned the official committee of the Aëro Club of France to witness and time his performance. Poles were erected at the corners of a triangle 350, 200, 275 feet apart respectively. Around this course he flew nearly five times, covering a distance of 5,575 meters in 9¼ minutes. Of this range the last 3,925 meters were covered without touching the ground. Thus at last he had out-flown Farman and established a new official record, the total distance actually covered being about ten kilometers, or approximately six miles. This ended, at least temporarily, the friendly competition at Issy; for now the aviators separated, Farman going to Belgium, Delagrange to Italy.

Delagrange’s fortune accompanied him abroad. On May 24th, he made some impressive demonstrations on the Place d’Armes at Rome in presence of the Minister of War and thirty thousand people. On May 27th, he flew before the King and Queen of Italy and many other court personages, remaining in the air nine and one half minutes, thus surpassing all previous European records for endurance and distance. But this was only preliminary. On the morning of May 30th, he came forth again on the Place d’Armes, a light breeze blowing. His machine rolled quickly over the ground, then circled gracefully ten times around in the air at a height of four to seven meters, covering an official distance of 12.75 kilometers, and remaining aloft 15 minutes, 26 seconds. On June 22d, at Milan, he flew before 15,000 people in the Place d’Armes, covering seventeen kilometers in 16 minutes, 30 seconds. Finally, on September 6th, at Issy-les-Moulineaux, he flew 29 minutes, 54 seconds, covering 14.8 miles, which proved his crowning effort for the year. As the two flights just mentioned surpassed all previous official ones in duration, it appears that Delagrange raised the world’s record four times within five months, increasing his own time from six and a half minutes in April to about thirty minutes in September, or nearly fivefold.

In the meantime, Farman was making rapid progress, gathering prizes and achieving wide renown. On May 30th, at Ghent, Belgium, taking with him M. Archdeacon, he flew 1,241 meters at a height of seven meters. He thus established a new record with two people, and won the 1,200 franc wager made with Santos-Dumont and Archdeacon against M. Charron, who contended that a flying machine would not, within the year, carry two men weighing sixty kilograms each. On June 6th he flew 20 minutes, 20 seconds, covering 19.7 kilometers, thus again increasing the world’s record, and winning the Armengaud prize of ten thousand francs for the first aviator to remain aloft fifteen minutes in France. On September 29th and October 2d, at Chalons, he successively increased the world’s record, and achieved his best results for the year. The first of these trials lasted 42 minutes, covering 24.5 miles; the second lasted 44.5 minutes, covering 25 miles. This last flight was forty times as long as the one of January, which gave him the grand prize of fifty thousand francs, and is a good index of the wonderful progress in aviation made in France during the year 1908. Between these two performances he, on September 30th, sailed from Chalons to Rheims, a distance of 27 kilometers, in twenty minutes. This flight was made over trees and houses, sometimes at an elevation of 200 feet, and was the first town-to-town flight ever accomplished. The following day he won the 500 franc prize for height, passing over balloons 82 feet from the ground. Such was the lively pace Farman set for the rest of the world.

Mr. Curtiss drifted into the business of building and operating air ships and flying machines by frequent association with inventors, who came to his bicycle works at Hammondsport, N. Y., for assistance in the design and construction of aërial craft. He was particularly sought as a constructor of propelling mechanism, for he had special skill and experience in producing light gasoline engines. As a motor expert he was invited to the laboratory of Dr. Alexander Graham Bell, at Beinn Breagh, near Baddeck, Nova Scotia, in the summer of 1907. Dr. Bell had developed his wonderfully light, strong and stable tetrahedral kites to such an extent that he wished to convert them into “aërodromes” by applying light propelling mechanism. He accordingly invited two young Canadian engineers, F. W. Baldwin and J. A. D. McCurdy, to consult with him regarding the structural details of his proposed flyer, and contracted with Mr. Curtiss to supply the motive power. These gentlemen with Lieutenant T. Selfridge, a guest of Dr. Bell, developed so many independent ideas that Mrs. Bell suggested the advantage of forming themselves into a scientific organization, at the same time offering the capital required for experimentation. Acting on this advice and generous offer, they formed themselves into the now famous Aërial Experiment Association, whose object was the construction of a practical aëroplane, driven through the air by its own motive power, and carrying a man.


PLATE XXIV.

THE RED WING.

CURTISS BIPLANE.

CURTISS BIPLANE WITH PONTOONS.

After some preliminary downhill glides[48] and studies with a motorless aëroplane, the association, on March 12, 1908, brought forth their first dynamic machine, the Red Wing, shown in Plate XXIV, in order to speed it along the ice of Lake Keuka, near Curtiss’s factory; the purpose being, not to fly, but to test the effect of the vertical rudder. To the surprise of the twenty-five onlookers, the machine, after running two hundred feet along the ice, serenely rose into the air and flew 319 feet. “This,” says Dr. Bell, “was the first public exhibition of the flight of a heavier-than-air machine in America.” It is noteworthy also that this machine was completed and ready for trial in less than seven weeks from the time of starting. Its design, while embodying suggestions from each member of the association, was attributed chiefly to Lieutenant Selfridge, who took the leading part in evolving the plans, and who gave them his final approval, it being the intention of the association to offer each man a chance to produce a flying machine after his own notions, aided by the experience and liberal advice of his fellows.

As the advantage of flying from the ice had been suggested some years before the death of Lilienthal, it seems remarkable that this method did not yield important results earlier in the development of aviation. A smooth ice field is such an ideal place for testing a dynamic aëroplane, that previous gliding experience would seem unnecessary, providing the machines were designed with a fair knowledge of the elementary principles of stability and control. Even glider practice could be effectively conducted over a smooth ice field after momentum had been acquired by aid of gravity, or a tow line. Having sufficient momentum the aviator could test his rudders cautiously without rising, then, after a little experience, make short glides in the air, and so be prepared to install the motor. Landing or falling on smooth ice at great horizontal speed, from a low elevation, is much less hurtful than tumbling on the ground, as every bold skater knows from experience.

The aëroplane II, designed by Mr. Baldwin, aided by his associates and their combined experience, resembled that of Lieutenant Selfridge in the trussing of its body surfaces, but was mounted on wheels, and provided with torsional wing tips for lateral control. When tested, it was found easy to launch and land, besides responding very promptly to the three-rudder control. In the hands of Mr. Curtiss, on May 22d, this aëroplane, called the White Wing, flew 1,017 feet in 19 seconds, and landed smoothly on a plowed field. This at the time was the longest flight ever made by an aviator in his first trip on a heavier-than-air machine.

It was now Mr. Curtiss’ turn to be captain of design and construction. Under his supervision aëroplane III, called the June Bug, was ushered forth, in the month of honeymoons. It differed from the two preceding in having a box tail; also in having a nainsook cover, instead of the red and white silk that characterized the Red Wing and the White Wing.

After some practice, this flyer behaved so well that it seemed competent to win the Scientific American Cup offered for a public flight of one kilometer straight away. Accordingly an official trial was arranged with a committee of the Aëro Club of America, for the fourth of July, 1908. It was the first official flight in the western hemisphere, and proved in every way most satisfactory. The machine flew 2,000 yards over an S-shaped course at a speed of 39 miles an hour, displayed admirable control, and had abundant motive power. The performance was an intimation and augury of the victorious flights to come the following year. As the Association now repaired to Dr. Bell’s summer home, the Hammondsport experiments terminated for the season.

The year 1908 also brought to happy fruition the long and persistent experiments of Louis Blériot, the most illustrious pioneer and champion of the monoplane. Beginning in 1900, he had tried one type after another, of flying machine, till he became world renowned for his fertility of invention, his daring, his picturesque accidents and hairbreadth escapes. So long as he was not killed he was certain to make progress; for he had every endowment that ensures success. He possessed the energy of early manhood, having been born in 1872; he had the thorough technical training of the Central School of Arts and Manufactures, where he graduated in 1895; he possessed extraordinary talent for invention and constructional detail; he had the prowess, courage and coolness requisite for testing intractable and dangerous flyers; he was in the world’s most active center of aviation; he also had sufficient means. If he was late in achieving success, it was because he preferred to develop original ideas, and could not be content with merely copying his predecessors.

Like many other novices in aviation, Blériot began by trying to build a machine with flapping wings that should fly like a bird. This was to be actuated by a carbonic acid motor. In 1904 he abandoned his first machine, of bird type, and turned to aëroplanes, beginning with a biplane of the Farman, or Voisin type. His second machine was built by Gabriel Voisin, one of the most experienced of the pioneer aëroplane manufacturers. This biplane, unprovided with an engine, was mounted on floats, towed along the Seine by a motor boat, and rose from the surface carrying Voisin as pilot. Blériot III, composed of elliptical cells, or sustaining surfaces, and powered with two Antoinette motors of 25 horse power each, was tested without success on Lake Enghien during the year 1905–6. Blériot IV was made of quadrangular cells, and launched at Bagatelle in 1906, carrying a soldier, Peyret; but crashed to earth in its first trial. Finally in 1907, Blériot V, mounted by the inventor himself, rose into the air and flew successfully, but was lacking in stability. His sixth aëroplane was of the Langley type, provided with a 24-horse-power motor, then with a 50-horse-power Antoinette; but it was unstable fore and aft. One day it traversed 184 meters, then fell from a height of 25 meters and was shattered on the ground. His seventh was one of the swiftest yet constructed, attaining a speed of nearly 80 kilometers an hour, and, in two private trials, covering a distance of 500 meters. Thus seven years had slipped away, leaving Blériot still in the tentative period of his work. But now he was at the threshold of a career of brilliant success, which soon brought him the highest honors at home and throughout the world.

After various minor flights in the spring and summer of 1908, Blériot, on October 31st of that eventful year in aviation, determined to attempt a cross country voyage, as Farman had done the day before. As will be remembered, Farman had flown from Chalons to Rheims, above trees and houses, a distance of nearly 17 miles, thus achieving the first town-to-town flight in history. Blériot would improve that record at once, by flying in a closed circuit embracing several villages.

His renowned cross-country flight was directed from Toury to Artenay, a village nine miles distant. Mounting his aëroplane VIII-ter, at mid afternoon, in presence of a large gathering, Blériot followed the course shown in Fig. 40. In the neighborhood of Artenay he landed for a few minutes. After some slight repairs to his magneto, he reascended, turned about and headed for home. Half way on his return course he stopped again for a few minutes, at the Village of Santilly; then readily reascended and flew to the neighborhood of his starting point. He thus traveled about 17 miles in a closed circuit. This performance, with that of Farman the day before, inaugurated the period of aërial voyages in heavier-than-air machines. It appealed so powerfully to the sentiment of the community that a monument was erected at Toury to commemorate the glorious achievement.


PLATE XXV.

BLÉRIOT FLYING OVER TOURY-ARTENAY CIRCUIT.

BLÉRIOT MONOPLANE NO. VIII.

BLÉRIOT MONOPLANE NO. IX.

Fig. 40.—Blériot’s Toury-artenay Aëroplane Circuit, 1908.

A fair view of the famous monoplane, in its renowned cross-country voyage, is presented in [Plate XXV]. It consisted of a single sustaining surface firmly attached to a long trussed spine mounted on three wheels, and carrying at its front end the gasoline motor and propeller, at its rear end two of the rudders, the third, or lateral, rudder being placed at the wing terminals. A part of the trussed frame was covered, to minimize the atmospheric resistance against the framing, pilot and engine. The vertical rudder at the rear turned the machine to right or left; the horizontal rear rudder controlled the elevation and pitching of the machine; the torsional wing tips controlled the lateral stability, and could be used to cant the aëroplane or check its listing, as in the Wright and Curtiss machines. The craft exhibited an easy poise in the air, and possessed good equilibrium, owing to its arrowlike structure and its three-rudder system of control. It was a strong rival of the biplanes previously noticed, and a herald of better things to come.

In the meantime the Wright brothers had resumed their field practice. During the month of May, 1908, they tested their famous aëroplane of 1905, provided with increased engine power, and carrying two passengers upright. A few brief flights were made at speeds of 41 to 44 miles an hour, showing that all the mechanism was adequate and effective. But on May 14th a false push on a lever, made by Wilbur Wright, brought the flyer to earth, wrecking it too badly to be repaired in the few days available for experimentation. These flights were but preliminary to the official trials set for the approaching summer; for the brothers had contracted to furnish one machine to the United States Signal Corps, another to a French syndicate.

The Chief Signal Officer of the United States Army in December, 1907, had issued specifications, and invited bids, for a flying machine apparently far in advance of the art. The flyer was to carry two men aggregating 350 pounds, was to remain aloft one hour continuously, and was to maintain an average speed of 40 miles an hour in a cross-country flight to and fro, covering a distance of ten miles. The contractor must instruct two officers to operate the flyer. Furthermore the machine must be capable of flying 125 miles without stopping. The requirements seemed severe, even to those well versed in aviation. Nevertheless two bids were received; one from the Wright brothers for a biplane to cost $25,000, another from Mr. A. M. Herring for a biplane costing $20,000. Both bids were accepted for the summer of 1908; but only the Wright contract was eventually carried out.

About the same time the Dayton inventors had sold their patent rights in France to a syndicate in that country. The contract specified a machine for two passengers, having a speed of 50 kilometers an hour, and a range of 125 miles. Furthermore, the inventors agreed to instruct three pupils to manage the aëroplane. The fulfillment of these two contracts occupied some months, but presented no formidable difficulties. Though neither of the brothers had ever flown an hour, and though both were comparatively unskilled as operators, they had such faith in their invention that they undertook to launch themselves publicly in untried machines, Wilbur Wright in France, Orville in America, at about the same time.

Of these two tests, the one conducted by Orville Wright at Fort Myer, near Washington, was the most successful at first. After a few brief preliminary trips, he suddenly astonished the world by phenomenal flying. On the morning of September 9, 1908, he made a voyage above the drill ground lasting 57 minutes, 31 seconds, and again in the evening another flight lasting one hour and three minutes, this time before a throng of distinguished spectators. Immediately thereafter he took aboard Lieut. Frank P. Lahm for a flight of six minutes’ duration. These records were improved day by day, and all things seemed propitious for the official tests of speed and endurance. But on September 17th, while sailing with Lieutenant Selfridge at a height of about 75 feet, a blade of the right-hand propeller struck and loosened a stay wire of the rear rudder. Instantly the wire coiled about the blade, snapping it across the middle. Thereupon the machine became difficult to manage, and plunged headlong to earth, throwing the men with their faces on the bare ground, fatally wounding Lieutenant Selfridge, and seriously injuring Mr. Wright. Lieutenant Selfridge did not recover consciousness, and died within three hours, from wounds on the forehead and concussion of the base of the brain. Mr. Wright suffered a fracture of the left thigh and of two ribs on the right side. The aëroplane was badly shattered in its framing, but the engine was practically intact. This accident terminated the tests for the season; but ere long a date was set for their resumption during the following year.


PLATE XXVI.

WRIGHT BIPLANE OF 1908.

STANDARD WRIGHT BIPLANE OF 1910.

WRIGHT RACING BIPLANE OF 1910.

Wilbur Wright began his demonstration for the French syndicate on the plain of Auvours, ten miles from Le Mans, France, on August 8, 1908. For some weeks his flights were very brief, owing to the balky condition of his engine; but this difficulty was removed by the middle of September. After the accident to his brother he remained inactive for a few days; then, to reassure his supporters, he raised the world’s record by flying a distance of over 52 miles, remaining aloft 1 hour, 31 minutes, 25 seconds. After this he continued at frequent intervals to make long flights, quite usually taking a passenger with him, and on several occasions a lady. His endurance, his altitude, his abandon and perfect control amazed and delighted Europe. Incidentally he won some valuable prizes, beating the French records for duration, distance and elevation. Once he rose to a height of 380 feet. On September 21st, he flew 42 miles in 1 hour and 31 minutes; on October 11th, he carried a passenger an hour and ten minutes; finally on the last day of the year he flew 77 miles in two hours and twenty minutes, thus winning the much coveted Michelin prize, of twenty thousand francs for the longest distance flown during the year. It was a triumphal close to the most progressive and eventful year in aviation—the first year of exhibition flying, the inaugural year of a noble art.

Having completed the speed and distance tests at Le Mans by the close of the year 1908, Wilbur Wright went to Pau, in the South of France, for the winter practice with his three pupils, Count de Lambert, Paul Tissandier and Alfred Leblanc. Here on the vast trial grounds at Pont Long, six miles from Pau, he had a commodious hangar with a workshop on one side, and on the other, apartments for the aviator and his mechanics. He arrived with his pupils, on January 14th, and next day was joined by his brother and sister, who had followed him from Paris, Orville being now well recovered from his injuries received at Fort Myer. In a short time the machine was set up, and early in February began its regular service, having a pair of levers for the teacher and another pair for the passenger. The pupils quickly acquired the art of steering, being first allowed to control one lever, with Mr. Wright holding the other; then being entrusted to manage the whole machine, with their tutor as passenger; and finally becoming themselves teachers of the newly acquired art. Only a few hours’ practice was needed to attain proficiency, the whole time in the air aggregating hardly half a day for each pupil, though the lessons extended over many days.

A pleasant feature of the sojourn at Pau and Le Mans was the number and character of the visitors, and the boundless enthusiasm displayed toward the new art. Tens of thousands of people from the neighboring places, and tourists from many parts of the earth assembled to see the flights; statesmen, military officers, scientific and parliamentary delegations, representatives of innumerable periodicals. Queen Margherita, having missed a flight on her first visit to Le Mans, came a second time, and remained three hours standing on the field, fascinated by the wonderful aërial equipage. The King of Spain, Alfonso XIII, who visited the aërodrome at Pau, on February 20th, manifested the keenest interest and delight in examining the aëroplane and seeing it fly; first with the pilot alone, then with an extra passenger. He took a seat in the machine beside Mr. Wright, discussed its working, and expressed his deep regret that reasons of state prevented him from making an ascension. A month later the King of England, who was at Biarritz, adjourned to Pau, where he remained to witness two unusually fine flights. He expressed the greatest pleasure in the performance, questioned the brothers about the details of the machine, and complimented them on their achievement.

From Pau, Wilbur Wright went to Italy, about the end of March, to fulfill an engagement to give demonstrations and lessons in the use of the biplane. He was welcomed at Rome by the King of Italy, on April 2d, and later gave a public exhibition of flying, to aid the sufferers in the recent earthquake at Messina. His flights were attended with great enthusiasm, and his lessons in aviation were quickly mastered; his pupil, Lieutenant Calderara, soon making public flights alone. A rare sight it was, this modern winged chariot soaring above the ruins of that ancient campagna, bearing with it a moving-picture camera.

By the end of April Mr. Wright had finished his task in Italy, and was journeying homeward with his sister and brother by way of London, where they enjoyed the hospitalities of the Aëronautical Society of Great Britain; and where, on May 3d, the brothers received the beautiful gold medal of that famous society, the oldest aëronautical organization in the world.

The return to America was primarily for the purpose of completing the official tests at Fort Myer; but incidentally the brothers must find time to receive new honors and ovations. While in the shop at Dayton, working vigorously to complete a new aëroplane for the War Department, in the hope of finishing the demonstrations by June 28th, the limit of their allotted month, they were showered with attentions too numerous for their comfort. They must drop their tools in order to go to Washington to receive the gold medal of the Aëro Club of America from President Taft, at the White House, on June 10th. On June 17th they must witness an elaborate demonstration in their honor at Dayton, where they received a gold medal from the city, another from the State, and another from the Federal Government. Finally late in June, they arrived in Washington with the rehabilitated biplane, to make good their contract with the Signal Corps.

The early tests of this aëroplane were not an unmixed triumph for the Wright brothers and their well-wishers. At first the machine failed to fly completely about the drill ground. It took the air with difficulty, and came to the earth on the first turn. Some lack of adjustment in the frame was suspected. The motor was accused of weakness. The launching weights[49] were too light. The brothers explained that a new flyer is like a new horse; the driver must learn his idiosyncrasies before attempting to show him off to advantage. They intimated also that they would be pleased to have the great throng of prominent people, who flocked daily to the drill ground, kept away until their flying instrument was properly tuned for public performances. They discouraged superfluous attentions. The big legislators who ventured audaciously to peep into the sacred shed containing the marvelous machine, were hailed by the military guard, and unceremoniously marched across the line among the plain people. It was a dreadful shock to these mighty signors, and many a fat lawmaker cursed audibly, vowing never to vote a cent for flying squadrons. But still they haunted the drill ground daily, despite the long journey and the late dinner; for they were fascinated by the untold and unconjecturable possibilities of the new art.

June 28th came quickly, obliging the patient aviators to beg another extension of time. They were granted thirty days longer, which seemed to them more than necessary; but in this judgment they were mistaken. One accident after another delayed the consummation of their official task of flying one hour above the field, then five miles across country and return. Finally, on July 27th, Orville Wright, who was making all the flights, took with him Lieut. Frank P. Lahm, and sailed gloriously for one hour, twelve minutes and forty seconds, before ten thousand delighted spectators. It was an ideal summer evening, and all the maneuvers were performed with excellent poise, security and grace. A new world’s record was established. Now all the vast throng from the President and his cabinet to the simplest laborer, appreciating the achievement as a triumph for America and for humanity, burst forth into prolonged acclamation and applause.

The cross-country flight was next in order. The course from Fort Myer to Alexandria lay over scattered forests and a deep valley. The flight seemed a difficult and hazardous enterprise; but the brothers, confiding in their machine, seemed to have little apprehension of failure or peril. Indeed, they seemed most concerned about the bonus to be secured by flying at an average rate exceeding the contract speed of 40 miles an hour; for each additional mile an hour would pay them $2,500 above the normal price of the aëroplane. They accordingly declined to fly in any but very calm weather, no matter how vast the gathering of visitors, or how illustrious. They wished, of course, to expedite the final and crucial test; but they could not always have ideal conditions, and would not take undue chances. On the evening after the endurance test the engine balked, owing to the clogging of a rubber pipe from the gasoline tank. Dusk came on, and the disappointed crowd went home to a late dinner. The Secretary of War, who was present, very kindly granted a third extension of time, covering the rest of the month. Next evening it was a trifle breezy. Wilbur Wright announced that the flight could be made, but that the bonus would be less than on a still evening; he would therefore wait for calmer weather. Twelve thousand people were turned away disappointed. There was muttering among the impatient and warm of blood. It was remarked that the War Department could easily drop these procrastinated experiments and buy a practical aëroplane in the open market for $5,000. But the discommoded officers good-naturedly allowed the thrifty sons of Dayton to have their way in striving for a large bonus, beyond the normal price of $25,000.

On the following evening the weather was clear and fairly still. All was in readiness for the flight to Alexandria and return. Orville Wright, taking with him Lieut. B. D. Foulois, circled the drill ground on easy wing, then sailed directly across country for the captive balloon at Shuter’s Hill. In a few moments they vanished beyond the forest, and for a while even the most optimistic were doubtful of their safety. At length they reappeared sailing homeward at very great speed. The machine proudly circled the drill ground amid thunders of applause, and landed softly at the lower end, beyond the shed.

The multitude hastened to congratulate the aviators on their marvelous performance. For everybody it was a scientific and national triumph; for Wilbur Wright it was something more. With pencil and pad he quickly computed the bonus, surrounded by a wall of reporters. “Wise old Wilbur,” remarked one, “he knows the worth of coin in a crude republic. While Fame blows her trumpet he counts the solid gain.” The figures showed an average speed of 42.6 miles, making the bonus $5,000. The voyage was one of the finest ever executed up to that date; it was a glorious termination to a long and troublesome, but epoch-making demonstration. Now there remained only the task of instructing two officers to fly, and this was leisurely accomplished by Wilbur Wright in October.

As shown in [Plate XXVI] the Wright aëroplane used at Fort Myer in September, 1908, was a twin screw biplane mounted on skids and having the three-rudder system of control. The rear rudder turned the machine right or left, the front rudder raised or lowered it, the warping of the wings controlled the lateral poise. The turning right or left could be effected on level wing; but the inventors canted the machine sidewise, to obviate skidding, or sidewise gliding of the craft, due to centrifugal force. These three-rudder movements were performed by three separate levers actuating suitable mechanism; but they could be performed easily by a single lever having three separate movements, as preferred by some designers. The aëroplane in launching ran along a monorail, accelerated by a towrope passing over pulleys, and attached to a falling weight comprising nearly a ton of iron. The dimensions of the various parts are given as follows by Major George O. Squier,[50] the officer in charge of the experiments:

“The aëroplane has two superposed main surfaces 6 feet apart with a spread of 40 feet, and a distance of 6½ feet from front to rear. The area of this double supporting surface is about 500 square feet. A horizontal rudder of two superposed plane surfaces about 15 feet long and 3 feet wide is placed in front of the main surfaces. Behind the main planes is a vertical rudder formed of two surfaces trussed together about 5½ feet long and one foot wide. The motor, which was designed by the Wright brothers, has four cylinders and is water cooled. It develops about 25 horse power at 1,400 r. p. m. There are two wooden propellers 8½ feet in diameter which are designed to run at about 400 r. p. m. The machine is supported on two runners and weighs about 800 pounds.”

On the whole the demonstrations at Fort Myer in 1909 did not greatly enhance the prestige of aviation. They were attended by too many delays and accidents, and too much waiting for ideal weather. As a consequence the guardians of the national purse were not clamoring for an aërial flotilla. Some few, no doubt, understood that the aëroplane could brave more than a zephyr with safety; but the general public accepted the demonstrations at their face value. The unthinking multitude did not realize that with sufficient incentive, such as war presents, the Wright brothers could repeat those brilliant flights, of the end of July, under more severe weather conditions. Fortunately, events were transpiring elsewhere which vastly increased the popular fame and valuation of the new art. This refers more particularly to those startling achievements in aviation abroad which were largely stimulated by competition and prizes.

After the Fort Myer flights the Wright brothers separated, Orville going to Germany to represent their interests and give demonstrations; Wilbur exhibiting at the Hudson-Fulton celebration in New York, and teaching the Signal Corps officers to manipulate the newly purchased government aëroplane. As usual, both achieved distinction in their new fields. At Potsdam, on October 2d, Orville Wright, after a ten-minute flight with Crown Prince Frederic William, ascended alone, mounting steadily in circles for fifteen minutes, and reaching an elevation roughly estimated at 500 meters, after which he descended safely in five minutes. On September 18th, he made a new record at Berlin by carrying a passenger, Captain Englehardt, for 1 hour, 35 minutes and 47 seconds. Wilbur Wright, on September 9th, flew from Governor’s Island, in New York harbor, to and around the Statue of Liberty, then returned to the point of departure. On October 4th, starting from the same point, he flew over the waters of New York Bay and above the Hudson River to a point opposite Grant’s Tomb, then returned to Governor’s Island, covering a distance of about 19½ miles in 33½ minutes. The trip upward was made at an elevation of about 200 feet, through a stratum disturbed by vortices rising from the steamer smokestacks, and eddies caused by the northeast wind blowing over the tall buildings. The return was made at a level of 50 feet on the Jersey side of the river where the air was less turbulent. He intended later in the day to make a long flight, but, owing to the bursting of a cylinder head, he stopped his demonstrations and returned to Washington to finish his instruction of the Signal Corps officers. This was easy routine, and it afforded opportunity to try the effect of transferring one of the forward steering planes to the rear and applying it there as a fixed horizontal tail, as used by Voisin, Curtiss and others. The new arrangement was reported to increase the longitudinal steadiness of the aëroplane, and was used in subsequent Wright aëroplanes.

The brothers now ceased public flying for a while, to attend to the business of manufacturing and selling their craft. They formed an American company, enlarged their facilities for constructing machines, procured grounds for training operators, and prepared generally to fill orders both for aëroplanes and for public exhibitions. Not the least of their labor was to defend their patent claims, which they wished to be interpreted so broadly as practically to exclude all flyers whose lateral poise is controlled by changing the angle of incidence of the wings, or of lateral stabilizing planes. This was not an easy undertaking, since the torsion wing was a well-known device, having been described many times in public print, and having figured in earlier patents and experiments in various countries. To add to the difficulty, their patent claims apply specifically to the warping of normally flat sustaining surfaces, the warping of arched wings having been patented by Prof. J. J. Montgomery, whose invention antedates theirs.[51] However, if they produced no novel and radical invention in aviation, they, like Santos-Dumont in aëronautics, were first to achieve some measure of practical success, by applying a light automobile engine to a familiar machine in which former inventions and ideas were skillfully employed. On this ground of practical success they strove for an interpretation broad enough to establish a monopoly covering even Montgomery’s rights, which apparently they were infringing. But when to this end they applied for a preliminary injunction restraining Curtiss from using his system of control, and Paulhan from using Farman’s system, they were unable to convince the court of the justice of their petition, and the injunction suit was vacated.