HAS ORGANIZATION ADVANCED?

Origin of Species,
page 308.

The problem whether organization on the whole has advanced is in many ways excessively intricate. The geological record, at all times imperfect, does not extend far enough back to show with unmistakable clearness that within the known history of the world organization has largely advanced. Even at the present day, looking to members of the same class, naturalists are not unanimous which forms ought to be ranked as highest: thus, some look at the selaceans or sharks, from their approach in some important points of structure to reptiles, as the highest fish; others look at the teleosteans as the highest. The ganoids stand intermediate between the selaceans and teleosteans; the latter at the present day are largely preponderant in number; but formerly selaceans and ganoids alone existed; and in this case, according to the standard of highness chosen, so will it be said that fishes have advanced or retrograded in organization. To attempt to compare members of distinct types in the scale of highness seems hopeless; who will decide whether a cuttle-fish be higher than a bee—that insect which the great Von Baer believed to be “in fact more highly organized than a fish, although upon another type”? In the complex struggle for life it is quite credible that crustaceans, not very high in their own class, might beat cephalopods, the highest mollusks; and such crustaceans, though not highly developed, would stand very high in the scale of invertebrate animals, if judged by the most decisive of all trials—the law of battle. Besides these inherent difficulties in deciding which forms are the most advanced in organization, we ought not solely to compare the highest members of a class at any two periods—though undoubtedly this is one and perhaps the most important element in striking a balance—but we ought to compare all the members, high and low, at the two periods. At an ancient epoch the highest and lowest molluscoidal animals, namely, cephalopods and brachiopods, swarmed in numbers; at the present time both groups are greatly reduced, while others, intermediate in organization, have largely increased; consequently some naturalists maintain that mollusks were formerly more highly developed than at present; but a stronger case can be made out on the opposite side, by considering the vast reduction of brachiopods, and the fact that our existing cephalopods, though few in number, are more highly organized than their ancient representatives. We ought also to compare the relative proportional numbers at any two periods of the high and low classes throughout the world; if, for instance, at the present day fifty thousand kinds of vertebrate animals exist, and if we knew that at some former period only ten thousand kinds existed, we ought to look at this increase in number in the highest class, which implies a great displacement of lower forms, as a decided advance in the organization of the world. We thus see how hopelessly difficult it is to compare with perfect fairness, under such extremely complex relations, the standard of organization of the imperfectly-known faunas of successive periods.

* * * * *

Origin of Species,
page 121.

There may truly be said to be a constant struggle going on between, on the one hand, the tendency to reversion to a less perfect state, as well as an innate tendency to new variations, and, on the other hand, the power of steady selection to keep the breed true. In the long run selection gains the day, and we do not expect to fail so completely as to breed bird as coarse as a common tumbler-pigeon from a good short-faced strain. But, as long as selection is rapidly going on, much variability in the parts undergoing modification may always be expected.