FIFTEENTH SECTION VALUE OF THE AEROPLANE IN NAVAL WARFARE

I. Machines for coastal and high-seas work—Question of flying in winds.

The work of the aeroplane, when co-operating with land forces, is all-important, as has been shown; and another field, just as useful, lies in the utilisation of air-scouts in naval warfare.

The possibilities of the aeroplane in this direction are, however, only just being realised. To the credit of France goes the first definite steps. At Toulon, the French naval authorities are keenly alive to the value of aerial scouting over the sea. Plans have been made for dispatching aeroplanes from the decks of cruisers; and reconnoitring flights from the land, over the sea, are now being undertaken.

During the present year France will spend £40,000 upon naval aviation, quite apart from her disbursement in other respects.

Germany is training naval airmen, and experimenting with aeroplanes for use at sea. Austria has established an experimental station. In England—since Lieutenant (now Commander) Samson rose from the deck of a warship at Sheerness—the Admiralty is credited with an ambitious programme. In America, highly-practical work has been done in the way of building aircraft to rise from the water; and, in France, the Voisins have built a machine that lifts itself from the surface of the Seine. Farman, too, is building successful hydro-aeroplanes.

From the point of view of their work in naval warfare, a very important future lies before the aeroplane. So far as can be judged at the present time, it is possible to divide naval aeroplanes into two categories: I, coastal aeroplanes; and 2, aeroplanes for use on the high seas.

The former should be stationed at harbours and other sea-coast points of strategetic importance. The latter would be carried to sea with a fleet, and sent up, when desired, from the deck of a ship.

The coastal aeroplane would be invaluable in locating the approach of some attacking fleet. A machine would be sent up from a harbour and, flying high and at a great pace, would be able to scour a wide area of water in a surprisingly short space of time. Upon sighting an enemy’s fleet, the air-scout would be able to gauge its strength, and then dash back to its Headquarters at astonishing speed.

A fast-flying monoplane, acting as an observing craft, would be able to perform the work which would otherwise need the services of several cruisers, or a number of torpedo-boat destroyers.

As regards the aeroplane for work on the high seas, this should operate in conjunction with a specially-built fast steamer, or an auxiliary cruiser. Such a vessel, with one or more aeroplanes on board, would accompany a fleet. When an air-scout was wanted, it would be brought on deck and assembled, and would then be launched into the air from a special platform on the vessel’s deck.

After making a reconnoitring flight, the machine would return to the parent ship, and alight upon the deck. By means of such air-scouts, the position of an enemy’s fleet could first be detected, and then a careful watch kept upon its subsequent movements.

The results gleaned would be more trustworthy than those obtained from the look-out of a warship; and the field of vision would, also, be infinitely wider. What would be of great importance, of course, in connection with such aerial observations, would be for the pilot of the machine to report what he saw by means of wireless telegraphy. There is no reason why this should not be done. A well-organised service of naval aeroplanes, fitted with long-distance wireless, should, indeed, prove of vital importance.

The point has been made, by critics of the aeroplane for naval use, that the high winds often encountered at sea would limit the uses of aircraft. But, in reply to that, experienced airmen point out that, although winds at sea are high, they are also steady—far steadier, in fact, than those which blow over the land, and are broken up into eddies by passing over uneven ground.

A thirty-mile-an-hour wind, over the land, represents to-day quite as much as any airman would care to contend against, in the ordinary way; but it should be possible, with a high-speed monoplane of existing type, to carry out reconnoitring work, over the sea, in a wind blowing at the rate of forty miles an hour. The even force of the sea wind would make all the difference.

It may be anticipated, also, that this wind-flying capacity of the aeroplane, for work at sea, will rise from, say, forty to fifty miles an hour, as the speed of machines is increased. There is, indeed, every chance that a naval aeroplane will be able to give a good account of itself—even under adverse weather conditions.

II. Interesting tests—Machines for rising from water, and landing on a ship’s deck.

In America a number of interesting tests have been made with aeroplanes for naval use. It was in this country that Mr Eugene Ely, a skilled airman—who has since, unfortunately, met with his death—first demonstrated the practicability of alighting upon, and rising from, the deck of a battleship.

At the time the test was made, the American cruiser Pennsylvania was lying about twelve miles off San Francisco. For the purpose of the experiment, a wooden platform was erected at the cruiser’s stern, upon which the airman expressed his intention of descending.

Ely, flying a Curtiss biplane, left the shore in a slight mist, being guided as he approached his destination by the syren blasts of the Pennsylvania. When sighted by those on the cruiser, he was flying low, quite close to the surface of the water.

The airman steered past the Pennsylvania’s bow. Then he rose a little, and made a half-circle in the air. Smoothly approaching the vessel’s stern, he stopped his engine, and settled with absolute precision upon the platform.

After a short rest, Ely added to the practical interest of his performance by rising from the cruiser’s deck, and flying back to his starting-point, a field on the outskirts of San Francisco.

American naval men were naturally impressed by this performance, and also by a series of experiments which were carried out by Mr Glen H. Curtiss, the builder of the biplane which bears his name.

Mr Curtiss designed a biplane which would float upon the water on pontoons, and also rise from the surface of the water when it moved forward at a certain speed.

Considerable ingenuity was exercised in the construction of this machine. The pontoons upon which it was mounted, and which took the place of ordinary land wheels, were hollow boxes with pointed ends, made out of wood, and sheathed with thin steel.

A large pontoon, under the centre of the biplane, bore the greater part of the weight, and a smaller pontoon was set under the front of the machine; while a third pontoon, smaller still, was placed at the extreme forward end of the aeroplane, to tilt it upward when it began to move across the water.

First tests with this machine were entirely successful. When forced forward by its propeller, at a speed of thirty miles an hour, the hydro-aeroplane skimmed along with only its main pontoon on the water. Then, at a slight acceleration, it rose easily into the air, and flew off. Descents upon the surface of the water were made with equal facility.

[Illustration: MOTOR TRANSPORT. Photo, M. Branger. This picture shows how a Breguet military biplane, with its main-planes folded by the sides of its body, can be towed from point to point behind a motor-lorry.]

After satisfying himself that his machine answered expectations, Curtiss carried out an instructive test in conjunction with an American battleship. Flying from a point on shore, he made a successful descent upon the water close beside the vessel. Then his machine was hoisted on board, by means of special tackle.

To complete the test, the biplane was subsequently lowered into the water again; and Curtiss rose without difficulty, flying back to the shore.

The objection to such a scheme as this, of course, would lie in the probable roughness of the sea under many conditions of work. Were a high sea running, it is generally admitted that an aeroplane could not possibly rise from, or land upon, the surface of the water. Therefore, the sound plan, at any rate on the high seas, would seem to be for an air-scout to be launched from the deck of a ship.

An aeroplane on pontoons should, however, find many uses for coastal work. It could, for example, be housed in a shed on the water. It could then leave harbour on a reconnoitring flight, and return again, when alighting, to the smooth water inside the harbour. An involuntary descent, when over the water, would not cause it injury.

Apart from the work which it could perform as a scout, using wireless telegraphy to flash back its news to a parent ship, there are also the destructive possibilities of a naval aeroplane to be considered. In this regard, however, many experts do not consider that the potentialities of a naval aircraft would be so important as those of a machine operating with land forces.

An attack upon a warship by aeroplane would not, it is held, do much damage to the sea-craft, the contention being that the aeroplane would not be able to carry bombs sufficiently powerful to effect any appreciable damage. Another point made is that it would be exceedingly difficult for an aeroplanist to make good practice with his bombs, from the height at which he would have to fly in order to be comparatively safe from gun-fire, and also in view of the fact that both he, and his target, would be moving.

In this connection, however, there is much to be learned. It is not known, as yet, how powerful a bomb may be devised for the use of a destructive aeroplane; and, from the point of view of marksmanship with such missiles, types of releasing apparatus are now being devised which may ensure greater accuracy of aim than is at present considered possible.

A use for the naval aeroplane would be to cooperate with warships in attack upon land defences. A number of machines could be launched from the deck of the parent ship, and fly over docks and harbours, dropping incendiary and explosive bombs, and effecting considerable damage.

Another effective field for the use of naval aeroplanes should be in detecting the approach of submarines; but, in this regard, more data is certainly required.

Primarily for scouting, both from the land, and from a ship at sea, and also as a weapon of offence—if used in sufficient numbers—the aeroplane merits the careful attention of all naval authorities. In England, at the time of writing, very little has been done. A few naval officers have had an opportunity of learning to fly, owing to private generosity, and unimportant experiments have been made.

A very large sum of money has, however, been expended by the Admiralty upon a huge dirigible balloon, 500 feet long, which, after undergoing a tedious period of construction and alteration at Barrow, met with the untimely end of being wrecked by wind-gusts before it had ever taken the air.

In January, however, it was stated, more or less officially, that the Admiralty intended to devote serious attention, during 1912, to the question of naval airmanship; but, beyond arranging for another party of officers to learn to fly at Eastchurch, Isle of Sheppey, nothing definite has, at the time of writing, been done—save that it is understood that the Admiralty has committed itself to the construction of a smaller, rigid-type airship.

For naval work, beyond doubt, the powerful, high-speed aeroplane, capable of making progress against very strong winds, and sufficiently portable to be carried in appreciable numbers upon a specially-designed parent ship, is the ideal—with another type of aircraft, larger, and with a greater radius of action, to act as a scout from land defences.

NOTE

Since the above was written, our Naval authorities have decided to train forty airmen and to purchase a dozen experimental machines, including hydro-aeroplanes of various makes.