FOURTEENTH SECTION WAR IN THE AIR BETWEEN HOSTILE AEROPLANES
I. Certainty of a combat between aeroplanes in actual warfare—Air-scouts protected by aerial "cruisers."
"The duty of an aerial fleet, armed and equipped for offensive warfare, will be to put out of action an enemy’s aerial force before it can carry out its role of reconnoitring—or attacking vital points of communication."
In these words, a military authority of international repute indicates the war in the air which will, inevitably, take place in connection with any future European campaign.
His view is endorsed by another famous expert, who declares: "It is certain that the consequences of the use of aerial navigation will be to bring about, at the very outset of hostilities, a fight to the death between opposing aerial fleets."
The point that military authorities have come to recognise, of course, is this: if the flying machine is of vital importance to one side, it will prove equally valuable to the other. Therefore, the aim of one Commander-in-Chief will be to take steps to prevent his opponent from deriving full benefit from his aerial scouts.
Artillery-fire has been quoted, previously, as a means of combating the aeroplane, and destroying reconnoitring craft. But this method has been shown to be uncertain. What is considered a far more efficacious way of hampering the operations of an enemy’s air-scouts, is to send up machines to meet them in the air, and either drive them off, or put them out of action.
This suggests an actual contest, in mid-air, between two hostile craft; and such aerial battles are bound to occur. The most efficacious weapons, for such fighting, experience alone will indicate; but it is obvious that the ramming of one machine by another will not be resorted to. Were one aeroplane to charge an enemy’s vessel, the result would be the fall and destruction of both aircraft. Such an expedient might, of course, be resorted to as a last desperate move, say in the case where a hostile aircraft was escaping with very valuable information.
What is anticipated, in the way of a fighting aeroplane, is a machine which will carry two men, a pilot and a marksman, and be armed with some form of small quick-firing gun or rifle.
One of the experts of the French army air-corps thinks that a war aeroplane, in the immediate future, will carry a pilot, observer, and combatant. This combatant, in his opinion, should be armed with a light repeating rifle, ready to ward off the attacks of other machines.
This suggests that a reconnoitring aeroplane should be a fighting unit as well; but other views entertained are that a scouting aircraft should be accompanied by one or more fighting aeroplanes, the duties of which would be to protect it from attack.
It seems probable, in fact, that armed aeroplanes will accompany each reconnoitring machine when it is about to set out over the enemy’s position. These armed craft, or aerial cruisers, will most likely circle round the scouting machine, so as to open fire upon any hostile aeroplanes which approach.
In such an arrangement as this, the reconnoitring machine would probably be a slow-flying, reliable biplane, equipped exclusively for its work of observation. The fighting machines, on the other hand, would be built for speed. Fast-flying, strongly-built monoplanes would most likely be used; and one prominent constructer suggests that such fighting units should be fitted with a gun firing a small explosive shell, something like a "pom-pom." Such a form of armament would certainly be effective; and such an aerial cruiser is likely to prove a formidable opponent.
In connection with the carrying of guns upon an aeroplane, it may be mentioned that a light machine-gun has already been fitted to a biplane; but little has been said about such tests, and nothing definite, in the way of experiments, has, as yet, been recorded.
In connection with the aerial battles that are certain to precede the land actions of the future, it is difficult to foresee, exactly, what method will be pursued by the Commanders of two rival Air Battalions. It is fairly clear, however, that each will seek to prevent a hostile aeroplane from coming within observation distance of his forces; and, at the same time, by such strategy as wide detours, each will endeavour to slip reconnoitring craft through the enemy’s lines.
In the elaboration of any such plans of campaign, it is obvious that the fighting units of the air-fleet—the fast "cruisers" which will carry machine-guns—will come into speedy conflict. Combat, probably, will resolve itself into a question of manoeuvring for position; then the opponents will open fire. Marksmanship and skill in handling a machine will spell all the difference between victory and defeat. After a preliminary exchange of shots, two machines will sweep into closer range, and then one of them, "winged" by well-directed fire, will be put out of action, and will flutter away earthwards.
It is obvious that an exceptionally fast, high-powered aeroplane, capable of rising at a maximum speed, will be most suitable for hostile work against other machines.
The question has been discussed as to protecting, with some form of armour, the vital parts of aircraft for offensive work. It seems likely that some such plan will be adopted.
II. An encounter in the air—Importance to an army of an aerial victory.
It was the late Captain Ferber—one of the first military enthusiasts in
France upon the subject of the aeroplane—who was asked the question:
"How will a fight take place between aeroplanes?" In reply, this famous
pioneer said:—
"In the same way as all fights between birds have ever taken place. When a falcon, for in stance, wants to attack a raven, it first pursues it; and, as soon as the raven finds itself overhauled, it ascends slowly, in spirals, and the falcon starts to rise in a parallel fine. If the raven can rise higher than the falcon, it is saved; if it cannot, its resource is to drop to earth, although during the descent it is liable to be hemmed in by the falcon. Every time the falcon darts upon the raven, the latter will try, by means of a clever side-slip, to avoid the impact. If the falcon has been dodged, there is a respite, for, carried beyond its aim, the falcon loses an elevation which it must painfully regain. The race for altitude may recommence, but now the flight is no longer doubtful; the raven will finally come to the ground, and will be vanquished. In a like manner, will aerial craft struggle."
An ability to "climb" rapidly, combined with high speed will, indeed, prove invaluable to the fighting aeroplane. If it can do so, it will undoubtedly seek to rise above an antagonist, and destroy it with a well-directed missile. If two machines are equally well-matched in the matter of rapid soaring and speed, their pilots will then exercise all possible skill in manoeuvring for position for an effective shot from whatever form of light machine-gun is carried.
The certainty that aerial fighting will precede any future battle in which aeroplanes are employed, indicates the necessity to build an air-fleet comprising several types of machines. In the first place, there will be need for an aircraft, either a large monoplane, or an exceptionally fast biplane, which will carry a machine-gun, or a gun throwing an explosive shell. This machine should act purely as an offensive unit, going in advance of other craft, and meeting the enemy’s "air cruisers" in combat.
Then may come a machine to carry out the important work of detailed reconnoitring. This, as has already been suggested, should be a biplane, carrying if necessary a "crew" of three—pilot, engineer, and observer. This machine would have one object only—to obtain full and accurate information concerning an enemy’s movements.
Protected by one or more "cruisers," it would probably ascend to a great height, and seek to slip by the enemy’s aerial line of defence, or make a wide detour and approach the foe from an unexpected direction.
A third type of machine should, it is held, be used for swift, comprehensive survey work. This machine, carrying merely its pilot, would be a monoplane so speedy that it would frequently be able to elude the pursuit of any armed craft, and so escape destruction.
This problem of aerial warfare is now very much in the minds of those who are concerned in the military flying work of France, Germany, and Russia. Quite recently, for example, one of Russia’s chief advisers, in the matter of war aeroplanes, declared: "It is now clear that future wars will be begun in the air, and that nations will be best prepared that are well-equipped with military aeroplanes." This statement, bearing out others previously quoted, shows how general is the view that aerial fighting will play a prominent part in any application of the aeroplane to actual war conditions.
Apart from the "cruiser" type of machine, previously described, it is suggested by many experts that a fighting aeroplane, carrying a heavier gun or guns—a sort of aerial "Dreadnought," in fact—should be constructed. The aim of such a machine would be to attack antagonists at long range.
Provided that they could vanquish aerial foes, these armed aeroplanes would, no doubt, turn their attention to the bombardment of fortifications, and land forces; and, the resistance of an enemy being crushed, the air-scouts would be free to fly where they pleased.
Thus a reverse in the air would prove a very serious matter indeed, for any army. The Commander-in-Chief would have all his plans laid bare by the unhampered movements of the enemy’s aeroplanes; and, at the same time, he would be unable to obtain any data concerning his antagonist’s dispositions. This, of course, would be apart from the damage that attacking aeroplanes might effect by bomb-dropping and machine-gun firing.
Many experts, indeed, are found to declare that a defeat in the air would be followed by a reverse on land. It is clear, at any rate, that great importance will attach to this aerial fighting.
A machine regularly equipped for aerial warfare has yet to be introduced—but it is merely a question of time, and probably a short time at that, before such a machine is built and tested.
The handling of such fighting aircraft will have to be learned, also the best modes of approaching and attacking a hostile aeroplane. Experimental machines will have to be built, and flown, and as effective manœuvres as possible carried out. But it will be a great war, of course, which will teach the real lessons concerning the offensive possibilities of the aeroplane.
Until then, of course, much must remain more or less theoretical. But it behoves great nations to beware of these grim potentialities of the new "arm."