THE CLOCK AND WATCH MAKER.

1. The great divisions of time, noted by uncivilized men, are those which are indicated by the changes of the moon, and the annual and diurnal revolutions of the earth; but the ingenuity of man was very early exercised in devising methods of measuring more minute periods of duration.

2. The earliest contrivance for effecting this object was the sun-dial. This instrument was known to the ancient Egyptians, Chaldeans, Chinese, and Bramins. It was likewise known to the Hebrews, at least as early as 740 years before Christ, in the days of Ahaz the king. The Greeks and the Romans borrowed it from their Eastern neighbors. The first sun-dial at Rome was set up by Papirius Cursor, about 300 years before Christ. Before this period, the Romans determined the time of day by the rude method of observing the length of shadows.

3. The sun-dial, as it is now constructed, consists of a plate, divided into twelve equal parts, like the face of a clock, on which the falling of a shadow indicates the time of day. The shadow is projected by the sun, through the intervention of a rod or the edge of a plate stile erected on the plane of the dial. But, since the dial was useful only in the clear day, another instrument was invented, which could be used at all times, in every variety of situation; and to this was given the name of clepsydra.

4. This instrument is supposed to have been invented in Egypt; but, at what period, or by whom, it is not stated. Its construction was varied, in different ages and countries, according with the particular modes of reckoning time; but the constant dropping or running of water from one vessel into another, through a small aperture, is the basis in all the forms which it has assumed. The time was indicated by the regularly increasing height of the water in the receiving vessel.

5. The clepsydra was introduced into Greece by Plato, near 400 years before Christ, and, about 200 years after this, into Rome, by Scipio Africanus. It is said that Pompey brought a valuable one from the East, and that Julius Cæsar met with one in England, by which he discovered that the summer nights were shorter there than in Italy.

6. The use which Pompey made of his instrument, was to limit the length of speeches in the senate. Hence he is said, by a historian of those times, to have been the first Roman who put bridles upon eloquence. A similar use was made of the clepsydra in the courts of justice, first in Greece, and afterwards in Rome.

7. A kind of water-clock, or clepsydra, adapted to the modern divisions of time, was invented near the middle of the seventeenth century; and these were extensively used, in various parts of Europe, for a considerable time; but they are now entirely superseded by our common clocks and watches, which are far more perfect in their operation, and, in all respects, better adapted to the purposes to which they are applied.

8. The invention of the clock is concealed in the greatest obscurity. Some writers attribute it to the monks, as this instrument was used in the twelfth century in the monasteries, to regulate the inmates in their attendance on prayers both by night and by day. Others suppose that a knowledge of this valuable instrument was derived from the Saracens, through the intercourse arising from the crusades. Be this as it may, clocks were but little known in Europe, until the beginning of the fourteenth century.

9. Richard, abbot of St. Alban's, England, made a clock in 1326, such as had never been heard of until then. It not only indicated the course of the sun and moon, but also the ebbing and flowing of the tide. Large clocks on steeples began to be used in this century. The first of this kind is supposed to have been made and put up in Padua by Jacobus Dondi.

10. A steeple clock was set up in Boulogne, in 1356; and, in 1364, Henry de Wyck, a German artist, placed one in the palace of Charles V., king of France. In 1368, three Dutchmen introduced clock-work into England, under the patronage of Edward III. Clocks began to be common both in England and on the Continent, about the end of the fifteenth century.

11. The clock of Henry de Wyck is the most ancient instrument of this kind of which we have a description. The wheels were made of wrought iron, and the teeth were cut by hand. In other respects, also, it was a rude piece of mechanism, and not at all capable of keeping time with accuracy. But, rude as it was, it is not likely that it was the invention of a single individual; but that, after the first rude machine was put in motion, it received several improvements from various persons. This has, at least, been the case with all the improvements made on the clock of Henry de Wyck, to the present day.

12. The application of the pendulum to clock-work appears to have been first made by Vincenzo Galileo, in 1649; but the improvement was rendered completely successful, in 1656, by Christian Huygens, a Dutch philosopher. The laws of the oscillation of the pendulum were first investigated by Galileo, the great Italian philosopher, and father of the Galileo just mentioned. His attention was attracted to this subject by the swinging of a lamp suspended from the ceiling of the Cathedral, at Pisa, his native city.

13. The clocks first made were of a large size, and were placed only in public edifices. The works were, at length, reduced in their dimensions, and these useful machines were gradually introduced into private dwellings. They were finally made of a portable size, and were carried about the person. These portable clocks had, for their maintaining power, a main-spring of steel, instead of a weight, which was used in the larger time-keepers.

14. The original pocket-watches differed but little, if at all, in the general plan of their construction, from the portable clocks just mentioned. The transition from one kind of instrument to the other was, therefore, obvious and easy; but the time of the change cannot be certainly determined. It is commonly admitted, however, that Peter Hele constructed the first watch, in 1510.

15. Watches appear to have been extensively manufactured at Nuremburg, in Germany, soon after their invention, as one of the names by which they were designated, was Nuremburg eggs. These instruments, as well as clocks, were in common use in France, in 1544, when the company of clock and watch makers of Paris was first incorporated.

16. In 1658, the spring balance was invented by Doctor Nathaniel Hooke, an English philosopher. At least the invention is attributed to him by his countrymen. On the Continent it is claimed for Christian Huygens. Before this improvement was made, the performance of watches was so defective, that the best of them could not be relied upon for accurate time an hour together. Their owners were obliged to set them often to the proper time, and wind them up twice a day.

17. After the great improvements had been effected in the clock and watch by Huygens and Hooke, several others of minor importance were successively made by different persons; but our limits do not allow us to give them a particular notice; we will only state that the repeating apparatus of both clocks and watches was invented, about the year 1676, by one Barlow, an Englishman; that the compensation or gridiron pendulum was invented by George Graham, of London, in 1715; and that jewels were applied to watches, to prevent friction, by one Facio, a German.

18. Clocks and watches are constructed on the same general principles. The mechanism of both is composed of wheel-work, with contrivances to put it in motion, and to regulate its movements. The moving or maintaining power in large clocks is a weight suspended by a cord to a cylinder. In watches, and sometimes in small clocks, this office is performed by a steel spring. In the clock, the regulation of the machinery is effected by the pendulum, and in the watch, by the balance-wheel, or spring balance. In either case, the maintaining power is prevented from expending itself, except in measured portions.

19. The time is indicated by hands, or pointers, which move on the dial plate. The minute hand is attached to the axle of the wheel which makes its revolution in sixty minutes, and the hour hand to the one which makes the revolution in twelve hours. Greater and smaller divisions of time are kept and indicated on the same principle. The part of a clock which keeps the time, is called the going part; and that which strikes the hour, the striking part.

20. The division of labor is particularly conspicuous in the manufacture of watches, as the production of almost every part is the labor of a distinct artisan. The workman who polishes the several parts, and puts them together, is called, among this class of tradesmen, the finisher or watch-maker. Those, therefore, who deal largely in watches in England, purchase the different parts from the several manufacturers, and cause them to be put together by the finisher.

21. Watches are extensively manufactured in various parts of Europe, but particularly in French Switzerland, France, and England. The London watchmakers have been celebrated for good workmanship, for more than a century and a half. This manufacture has not yet been commenced in the United States, although the machinery, or inside work, is very often imported in tin boxes, and afterwards supplied with dial plates and cases. This is especially the case with the more valuable kinds of watches.

22. Brass clocks are manufactured in most of our cities, and in many of our villages, and wooden clocks, in great numbers, in the state of Connecticut. These last are carried by pedlers into the remotest parts of the country, so that almost every farmer in our land can divide the day by the oscillations of the pendulum.