THE PAPER-MAKER.
1. The materials on which writing was executed, in the early days of the art, were the leaves and bark of trees and plants, stones, bricks, sheets of lead, copper, and brass, as well as plates of ivory, wooden tablets, and cotton and linen cloth.
2. The instruments with which writing was practised were adapted to the substance on which it was to be formed. The stylus, which the Romans employed in writing on metallic tablets covered with wax, was made of iron, acute at one end, for forming the letters, and flat or round at the other, for erasing what may have been erroneously written.
3. For writing with ink, the calamus, a kind of reed, sharpened at the point, and split like our pens was used. Some of the Eastern nations still write with bamboos and canes. The Chinese inscribe their characters with small brushes similar to camel's hair pencils. We have no certain evidence of the application of quills to this purpose until the seventh century.
4. As the literature of antiquity advanced, a material adapted to works of magnitude became necessary, and this was found both in the skins of animals, and in the celebrated plant papyrus, of Egypt; but the time when they were first applied to this purpose cannot be determined, although it is probable that the former has the preference as regards priority.
5. The papyrus was an aquatic plant, which grew upon the banks of the Nile. In the manufacture of paper from this reed, it was divested of its outer covering, and the internal layers, or laminæ, were separated with the point of a needle or knife. These layers were spread parallel to each other on a table, in sufficient numbers to form a sheet; a second layer was then laid with the strips crossing those of the first at right angles; and the whole having been moistened with water, was subjected to pressure between metallic surfaces. The pressure, aided by a glutinous substance in the plant, caused the several pieces to become one uniform sheet.
6. Parchment was manufactured from the skins of sheep and goats. In the preparation, these were first steeped in water impregnated with lime, and afterwards stretched upon frames, and reduced by scraping with sharp instruments. They were finished by the application of chalk, and by rubbing them with pumice-stone. The skins of very young calves, dressed in a similar manner, was called vellum. Parchment and vellum are still used for deeds and other important documents.
7. When Attalus, about 200 years before Christ, was about to found a library at Pergamus, which should rival that of Alexandria, one of the Ptolemies, then king of Egypt, jealous of his success, prohibited the exportation of papyrus; but the spirited inhabitants of Pergamus manufactured parchment as a substitute, and formed their library principally of manuscripts on this material. From this fact, it received the name of Pergamena among the Romans, who gave it also the appellation of Membrana.
8. The greatest quantity of paper was manufactured at Alexandria, and the commerce in this article greatly increased the wealth of that city. In the fifth century, paper was rendered very dear by taxation; and this probably was an inducement for an effort to produce a substitute. Accordingly, in the eighth century, it began to be superseded by cotton paper, although it continued in use in some parts of Europe, until three hundred years after the period last mentioned.
9. The manufacture of cotton paper was introduced into Spain, in the eleventh century, by the Arabians, who became acquainted with it in Bucharia as early as A.D. 704. About the year 1300, it was commenced in Italy, France, and Germany; and, in some of the paper-mills of these countries, paper was made from cotton rags. Linen paper is thought to have originated in Germany, about the year 1318.
10. The first paper-mill in England was erected by a German, named Spillman, in 1588; but no paper, except the coarse brown sorts, was made in that country, until about the year 1690. The finer kinds, both for writing and printing, were, before that time, imported from the Continent. But the paper of English manufacture will now compare with that of any other country. The French also make very fine paper.
11. In the United States, this manufacture has rapidly increased in amount within a few years. According to an estimate made in 1829, it appears that the whole annual product of the mills is worth between five and seven millions of dollars, and that the rags collected in this country amount to about two millions. The number of hands employed in the business are ten or eleven thousand, of whom about one-half were females. The manufacture has since been considerably increased, although the number of operatives may have been diminished, on account of the introduction of improved machinery.
12. Nature has supplied us with a great variety of substances from which paper may be fabricated, as flax, hemp, cotton, straw, grass, and the bark of several kinds of trees; but the fibres of the three first productions, in the form of rags, are the most usual materials. Most of these are primarily purchased from the people at large, by retail booksellers, country merchants, and pedlers, who in turn dispose of them to persons called rag-merchants, or directly to the paper-makers. When the rags come from the original collectors, all kinds are mixed together; but they are assorted according to their color and the nature of their original fibre, either by the rag-merchants, or by the paper-makers themselves.
13. In our attempts to afford the reader an idea of this manufacture in general, letter-paper has been selected, as affording the best means of illustration; since for this kind of paper, the best stock is employed, and the greatest skill is exerted in every stage of the process.
14. The process of the manufacture is commenced by cutting the rags into small pieces, by the aid of a sharp instrument, commonly a piece of a scythe, which is placed in a position nearly perpendicular before the operator. In the reduction of very coarse rags, such as sail-cloth, a cutting machine is also employed. Then, with the view of sifting out the loose particles of dirt, the rags are deposited in a large octagonal sieve made of coarse wire, and placed in a close box in a horizontal position. The sieve is moved by machinery, like the bolt of a flour-mill.
15. The second stage of the process consists chiefly in the reduction of the rags to a pulp. This is effected by the action of a cutting machine, the essential parts of which are two sets of blunt knives, the one stationary, and the other revolving. The machine is placed in a large elliptical tub, in which the rags are also deposited, with a suitable quantity of water. The liquid and fibrous contents of the tub are kept moving in a circle by the action of the machine, through which it passes at one point of its revolution.
16. The maceration occupies from ten to twenty hours, according as the material is more or less rigid; and, during part of this time, water is permitted to run in at one side of the tub, and out at the other, to render the pulp perfectly clean. Towards the close of this process, the pulp, if necessary, is bleached by means of chloride of lime, and oil of vitriol. It is also sometimes colored by adding a quantity of dye-stuff. The bleaching and coloring are effected without interrupting the action of the machine. The rags having been thus reduced, the pulp, together with a suitable quantity of water, is let out into a reservoir, from which it is drawn off into a vat, as fast as it may be needed for the production of the paper.
17. With this vat is connected the paper-making machine; and the part of the latter which first comes in contact with the material is a hollow cylinder, surrounded with a fine web of wire-cloth. This cylinder being immersed in the contents of the vat more than one-half of its diameter, the water passes off with a uniform rapidity, and the fibrous particles which had been suspended in it, settle with a remarkable uniformity on the outside of the brazen web. As the cylinder revolves, a continued sheet is produced, which is taken up by an endless web of woollen cloth, and carried round another cylinder of equal diameter, and then between two more, by which it is partially pressed.
18. From between these rollers, the paper passes out, in a continued sheet, upon a large cylindrical reel, called the lay-boy; and when a certain quantity of it, which is determined by a gauge, has been accumulated, the lay-boy is removed to a low table. The paper is then cut, with a toothless handsaw, into sheets twice the size of letter-paper. This part of the operation is very quickly performed, as a workman can cut up and pile in heaps, to be pressed, twenty reams in half that number of minutes, and attend to the machine at the same time.
19. After the paper has been successively pressed, and handled by separating the sheets two or three times, it is hung up on small poles, in an airy room, to be dried; and having been again pressed, it is sized by holding a quantity of the sheets at a time in a thin solution of glue and alum, the former of which is prepared in the paper-mill for the purpose, from shreds and parings of raw hides. The paper is freed from superfluous portions of the size, by submitting it to the action of a press. It is again dried as before, and again pressed; after which, the several sheets are examined, and freed from lumps and other extraneous substances.
20. They are then severed in half with a cutting machine, and afterwards calendered, by passing the sheets successively between rollers; or they are pressed between smooth pasteboards. In the latter case, hot metallic plates are sometimes interposed between every few quires of the sheets. The paper, when treated in this way, is called hot-pressed. It is next counted off into half-quires, put up into reams, pressed, trimmed, and finally enveloped in two thick sheets of paper, which completes the whole process of the manufacture.
21. The manufacture of paper, as just described, seems to be a tedious process; yet with two machines and a suitable number of hands, say sixty or eighty, three hundred reams of letter-paper can be produced from the raw material in a single day. It is hardly necessary to remark, that paper is of various qualities, from the finest bank-note paper, down to the coarsest kinds employed in wrapping up merchandise, and that, for every quality, suitable materials are chosen. The process of the manufacture is varied, of course, to suit the materials. None but writing and drawing paper requires to be sized.
22. Until after the beginning of the present century, paper was made exclusively by hand, and this method is still continued in a majority of the mills in the United States, although it is rapidly going out of use. It differs from that just described chiefly in the manner of collecting the pulp to form the paper, this being effected by means of a mould, a frame of wood with a fine wire bottom, of the size of the proposed sheet. In the use of this instrument, a quantity of the pulp is taken up, and while the vatman, or dipper, holds it in a horizontal position, and gives it a gentle shaking, the water runs out through the interstices of the wire, and leaves the fibrous particles upon the mould in the form of a sheet. The sheets thus produced are pressed between felts, and afterwards treated as if they had been formed by means of a machine.
23. The first idea of forming paper in a continued sheet originated in France; but a machine for this purpose is said to have been first made completely successful in England, by Henry and Sealy Fourdrinier. Many machines made after their model, as well as those of a different construction, are in use in the United States, to some of which is attached an apparatus for drying, sizing, and pressing the paper, as well as for cutting it to the proper size. Very few machines, however, yield paper equal in firmness and tenacity to that produced by hand.