Changes introduced by Milbourn

William Leybourn, in his The Line of Proportion or Numbers, Commonly called Gunter’s Line, Made Easie, London, 1673, says in his preface “To the Reader:”

The Line of Proportion or Numbers, commonly called (by Artificers) Gunter’s Line, hath been discoursed of by several persons, and variously applied to divers uses; for when Mr. Gunter had brought it from the Tables to a Line, and written some Uses thereof, Mr. Wingate added divers Lines of several lengths, thereby to extract the Square or Cube Roots, without doubling or trebling the distance of the Compasses: After him Mr. Milbourn, a Yorkshire Gentleman, disposed it in a Serpentine or Spiral Line, thereby enlarging the divisions of the Line.

On pages 127 and 128 Leybourn adds:

Again, One T. Browne, a Maker of Mathematical Instruments, made it in a Serpentine or Spiral Line, composed of divers Concentrick Circles, thereby to enlarg the divisions, which was the contrivance of one Mr. Milburn a Yorkshire Gentleman, who writ thereof, and communicated his Uses to the aforesaid Brown, who (since his death) attributed it to himself: But whoever was the contriver of it, it is not without inconvenience; for it can in no wise be made portable; and besides (instead of compasses) an opening Joynt with thirds [threads] must be placed to move upon the Centre of the Instrument, without which no proportion can be wrought.

This Mr. Milburn is probably the person named in the diary of the antiquarian, Elias Ashmole, on August 13 [1646?]; “I bought of Mr. Milbourn all his Books and Mathematical Instruments.”[8] Charles Hutton[9] says that Milburne of Yorkshire designed the spiral form about 1650. This date is doubtless wrong, for Thomas Browne who, according to Leybourn, got the spiral form of line from Milbourn, is repeatedly mentioned by William Oughtred in his Epistle[10] printed some time in 1632 or 1633. Oughtred does not mention Milbourn, and says (page 4) that the spiral form “was first hit upon by one Thomas Browne a Joyner, . . . the serpentine revolution being but two true semicircles described on severall centers.”[11]