The Iron Group

Pure iron is a chemical curiosity which looks very much like silver. As obtained from its ores, or as it occurs in Nature, iron always has some impurities with it, such as carbon, silicon, sulphur and phosphorus, and these are highest in the crudest iron such as “pig-iron.” Its malleability and ductility are only a little less than for gold and silver, and so it has a wide range of qualities for use by man. It is only rarely found native in minute grains in some of the dark lavas. There is however one remarkable exception to this statement, in that on Disco Island, Greenland, there is a basaltic rock, from which are weathered great boulders of native iron up to 20 tons in weight. This iron is very like that occurring in meteorites, and probably came from great depths in the earth’s interior. The specific gravity of iron is 7.8. It makes up around 5% of the crust of the earth, and probably occurs in much larger percentages in the interior of the earth.

Iron was discovered by man later than gold or silver or copper, about 1000 B.C.; but once found it was so much more abundant than any of these that it soon dominated over copper, and from Roman times to the present has been the basis of progress in civilization, and these times are well called “the iron age.”

Iron unites freely with the non-metals, and occurs as sulphides, oxides, carbonates, etc., and is also present as a secondary metal in that great group of minerals known as the silicates (see [page 97]). It alloys with a wide range of other metals, every combination altering the properties of the iron, and thus making it useful in a still greater range of manufacture. The introduction of ¼ to 2½% of carbon into iron makes steel, which is harder (in proportion to the amount of carbon) and stronger than the pure iron.

Iron compounds are among the most numerous and important of the colors in Nature’s paint box, limonite furnishing the browns which color the soil and so many of the rocks, hematite giving the red color to other abundant rocks, and magnetite often coloring igneous rocks black, while the chlorophyll which gives the green color to plants is an iron compound, as is also the hemoglobin which gives the red to our blood.

Iron is present in all igneous rocks, and secondarily in the sedimentary and metamorphic rocks. It is soluble in water, and so is being constantly transferred from place to place, and changes from one compound to another, according to the circumstances in which it is placed.

The primary forms are pyrite, magnetite and the silicates. When in weathered rocks the iron is changed to limonite, siderite or hydrated silicates. Hematite is an intermediate oxide from which the water contained in limonite has been driven off by moderate heat or bacterial action.

[Limonite]
2Fe₂O₃·3H₂O
[Pl. 12]

Never crystalline, occurs in mammillary, botryoidal and stalactitic forms, or in fibrous, compact, oolitic, nodular or earthly masses; hardness 5.5; specific gravity 3.8; color yellow-brown to black; streak yellow-brown; luster metallic to dull; opaque.

Limonite is a very common mineral, the color, streak and hardness identifying it readily. Iron rust is its most familiar form. When powdered it is the ochre yellow used in paints. Being so universally distributed, it is to be expected it will occur in a variety of ways. First, there is the fibrous type found lining cavities, in geodes, or hanging in stalactites in caves. This has a silky luster, an opalescent, glazed or black surface, and is in mammillated or botryoidal masses. Second, it may occur in compact masses in veins, where it was deposited by waters; which, circulating through the adjacent rocks, gathered it from the rocks, and, on reaching the open seams, gave it up again. Third, it may occur in beds on the bottom of ponds, where it was deposited by waters which gathered it as they flowed over the surface of the country rocks. Measurements in Sweden show that it may accumulate in such places as much as six inches in the course of twenty years. In ponds and swamps, the decaying vegetation forms organic compounds, which cause the precipitation of the iron from the water, as it is brought in by the streams. This sort of iron in the bottom of ponds or swamps is also known as “bog iron.” Another form in which limonite may occur in ponds, lakes, or even the sea, is in oolitic masses. In this case the iron forms in tiny balls, with perhaps a grain of sand at the center, and one coat of iron after another formed around it, like the layers of an onion. If the resulting balls are tiny this is called oolitic (like fish eggs), but if the balls are larger it is pisolitic (like peas). Bacteria probably have a good deal to do with the precipitation of limonite in this manner. Fourth, limonite occurs in earthy masses, usually mixed with impurities like clay and sand, which are the residue left behind, where limestones have been dissolved by weathering. The fifth mode of occurrence is known as gossan, or “the iron hat,” which is a mass of limonite capping a vein of some sulphide mineral, like pyrite, chalcopyrite or pyrrhotite, which has been exposed to weathering; and in these minerals the sulphur has been removed, leaving a mass of limonite over the vein. This is particularly common in the west. Limonite is quite easily fusible and so was probably the first ore from which early man extracted iron.

Limonite is iron oxide, with 3 molecules of water of crystallization (or constitution) associated with every 2 molecules of the oxide. If limonite is moderately heated the water is driven out and the resulting compound is hematite, the same oxide, but without the water. In this case and many other similar cases, as gypsum, opal, etc., we have two or more minerals resulting from the presence or absence of water in the mineral. The water molecules have a definite place in the arrangement of molecules which determines the structure of the mineral. Sometimes the water is driven out at a temperature around 212 F., in which case it is called, water of crystallization, but in other cases as gypsum, a considerably higher temperature is required to drive out the water, and then it is called, water of constitution. In all cases the removal of the water changes the arrangement of molecules and a new mineral results, with characteristics of its own.

In this case limonite is only one of a series of minerals which have the Fe₂O₃ molecule as a basis, and that incorporate more or less water into their molecular construction as follows:

Turgite 2Fe₂O₃·H₂O
Goethite Fe₂O₃·H₂O
Limonite 2Fe₂O₃·3H₂O
Xanthosiderite Fe₂O₃·2H₂O
Limonite Fe₂O₃·3H₂O

Of these goethite is crystalline, the others non-crystalline. They may occur pure or in all sorts of mixtures, the mixtures usually being lumped under limonite. The limonite is far the commonest of the series, goethite is fairly common, but the others are rare as pure minerals.

Limonite is found in all parts of all states and in every country. Though so common, it is by no means an important source of iron today, only about one percent of the iron mined in this country coming from this source, though in Germany, Sweden and Scotland it is relatively much more important.

[Goethite]
Fe₂O₃·H₂O
[Pl. 12]

Occurs in lustrous brown to black orthorhombic prisms, usually terminated by low pyramids; hardness 5; specific gravity 4; color brown to black; streak brownish-yellow; luster imperfect adamantine; opaque.

Goethite, named for the poet Goethe, who was interested in mineralogy, is much less abundant than limonite or hematite, but occurs with them, when they are in veins. Its usual form is an orthorhombic prism with the edges beveled, and a low pyramid on either end. The crystals usually grow in clusters, making a fibrous mass, often radiated, in which case it is known as “needle iron stone”; or the prisms may be so short as to be almost scales; when, because of the yellowish-red color, it is called “ruby mica”. It is found in many states, including Connecticut, Michigan, Colorado, etc.

[Hematite]
Fe₂O₃
Pl. [13] & [14]
specular iron

Occurs in compact, mammillary, botryoidal, or stalactitic masses of dark red to black color, or in earthy masses of bright to dark red; hardness 6; specific gravity 5.2; color ochre red to black; streak cherry red to dark red; luster metallic, vitreous, or dull; opaque on thin edges.

Hematite is readily distinguished from other red minerals by its hardness and streak. It may occur in crystals, which belong to the hexagonal system, and are usually hemihedral forms of the double pyramid, or rhombohedrons. These rhombohedrons usually have the edges beveled, as in [Pl. 13], A; or are tabular in form as a result of the beveling of two of the opposite edges to such an extent that a form like [Pl. 13] B results. However the usual occurrence is in non-crystalline masses, which represent transformations from limonite by the loss of water of crystallization on the part of the limonite. In such cases we have fibrous, oolitic or compact masses, according to the form in which the limonite occurred. The transformation from limonite into hematite involves some heat to drive out the water of crystallization, but nothing like what is involved in metamorphism.

Hematite is the source of 90% of the iron mined in this country. Part of it comes from the famous Clinton iron ore, a layer a foot or more in thickness; starting in New York State, and extending all down the Appalachian Mountains to Alabama, where it is ten or more feet thick and the basis of the Birmingham iron industries. Then there are tremendous deposits of earthy to compact hematite, probably derived from limonite, around the west end of Lake Superior. This latter region yields today around 75% of the iron for this country.

Loose earthy masses of hematite are often known as “ochre red,” and were used by the Indians for war paint. Today the same sort of material is obtained by powdering hematite and using it for red paint. The red color in great stretches of rock is due to the presence of small amounts of hematite, acting as cementing material. The red of the ruby, garnet, spinel, and the pink of feldspars and calcite are due to traces of hematite.

This mineral is very common and found in every state.

[Magnetite]
Fe₃O₄
[Pl. 14]
Magnetic iron ore

Occurs in masses or in isometric octahedrons or dodecahedrons; hardness 6; specific gravity 5.8; color black; streak black; luster metallic; opaque on thin edges.

Magnetite is another important ore of iron, and is peculiar in being strongly magnetic; its name being derived, according to Pliny, from that of the shepherd Magnes, who found his iron pointed staff attracted by the mineral when he was wandering on Mount Ida. This magnetic property has been repeatedly used to locate beds of magnetite, and is very helpful in separating magnetite from the “black sands,” of which it so often forms a part. These sands however generally have magnetite with so much titanium in it that they are unfit for smelting.

Magnetite is found in association with igneous or metamorphic rocks, and often represents limonite or hematite which has been altered as the result of high temperatures. Some of it, in the igneous rocks especially, was undoubtedly in the molten magma and has crystallized out from the magma while it was still hot. It is the form of iron always indicative of former high temperatures. It is an ore mineral for about 3% of the iron in this country, but in Scandinavia and some other countries, it plays a leading role as the source of iron.

It is found in the Adirondack Mountains, in New Jersey, Pennsylvania, Arkansas, North Carolina, New Mexico, and California.

[Siderite]
FeCO₃
Pl. [13] & [14]
Spathic iron

Occurs in fibrous botryoidal masses or rhombohedral crystals, sometimes with curved faces; hardness 3.5; specific gravity 3.8; color gray-brown; streak white; luster vitreous; translucent on thin edges.

Like hematite this mineral belongs to the hexagonal system, and crystallizes in hemihedral form, making the rhombohedron. Its faces are often curved, which is rare in minerals, only a few forms like this and dolomite having other than plane faces. When siderite crystals grow in clusters, the crowding often results in growth on one face only, making a mass of fibrous character, and in such cases the surface of the mass is botryoidal in contour. The mineral is likely to oxidize, losing its gray-brown color, and becoming limonite. In the United States it is scarcely ever used as an ore for iron, but in Germany and England a great deal of iron is smelted from this mineral.

It occurs in Massachusetts, Connecticut, New York, throughout the Appalachian Mountains, and also in Ohio.

[Pyrite]
FeS₂
Pl. [15] & [16]
iron pyrites

Occurs as cubes, octahedrons and pyritohedrons, or in compact masses, scales or grains; hardness 6; specific gravity 5.1; color brassy yellow; streak greenish-black; luster metallic; opaque on thin edges.

This is one of the commonest of all minerals. It is found in all kinds of rocks, with all kinds of associations, in all parts of the world. Its crystals are isometric, and cubes and octahedrons are abundant. The pyritohedron is also a common form, and characteristic of this mineral. It is a hemihedral form derived from a 24-sided form, i.e. the cube with four faces on each side. On this 24-sided form each alternate face has developed and the others have disappeared, resulting in a 12-sided form, known as the pyritohedron, which differs from the dodecahedron in that each of its faces is five-sided instead of rhomboidal. When in crystals pyrite can not be easily confused with any other mineral; but when in masses it is often mistaken for gold, chalcopyrite, pyrrhotite or marcasite. From the first two, the color should be sufficient to distinguish it, for they are golden yellow. Pyrrhotite is bronze yellow, and marcasite is paler yellow. Then too in hardness pyrite is much harder than any of these minerals except marcasite. This last is the one which is most likely to cause real difficulty. Its lighter color, and the fact that it usually comes in fibrous masses are the best distinctions.

In spite of being so abundant pyrite is scarcely ever used as an ore for iron, because the sulphur makes the metal “short,” or brittle, and the sulphur is not easily gotten entirely out of the iron; but pyrite is used largely in the manufacture of sulphuric acid, so important to many of our industries.

Other sulphides are commonly mixed with pyrite, such as chalcopyrite, arsenopyrite, argentite, etc.; but the most important impurity is gold, which is often scattered through the pyrite in invisible particles, and sometimes in quantities enough to make it worth while to smelt it for the gold.

Pyrite is particularly the form in which the sulphur compounds of iron appear in rocks which have been highly heated, and is to be expected in metamorphic rocks and also igneous rocks, especially in fissures and veins leading from the igneous rocks. It may occur in sedimentary rocks, but in these last it is usually marcasite.

[Marcasite]
FeS₂
[Pl. 15]
white pyrite

Occurs in orthorhombic crystals, usually grouped to make fibrous or radiating masses, or non-crystalline in masses; hardness 6; specific gravity 4.8; color pale brassy-yellow; streak greenish-gray; luster metallic; opaque on thin edges.

Marcasite has the same chemical composition, as pyrite, and looks like it, but is lighter colored and usually occurs in fibrous masses. It is the commoner form in limestones and shales, while pyrite is more likely to occur in igneous and metamorphic rocks. It seems probable that marcasite is due to a more hasty precipitation from cold solutions, while pyrite is deposited more slowly from hot solutions.

Isolated crystals of marcasite are rare; but, if formed, they belong to the orthorhombic system. Usually some form of twinning is present, and because of the multiple character of the twinning, marcasite crystals usually show a ragged outline, with reentrant angles. It is most abundant in radiated masses, which appear fibrous on the broken surfaces. It decomposes easily, taking oxygen from the air and forming, even in museum cases, a white efflorescence or “flower,” which is iron sulphate or melanterite. In moist air it takes water and decomposes to sulphuric acid which may change the surrounding limestone to gypsum. Marcasite is found wherever limestones and shales are the country rock.

[Pyrrhotite]
Fe₁₁S₁₂
Magnetic pyrites

Occurs in masses; hardness 4; specific gravity 4.6; color bronze; streak grayish-black; luster metallic; opaque on thin edges.

Tabular crystals are known, but are very rare. They belong to the hexagonal system. This form is easily distinguished from the other yellow minerals by being magnetic. It is by no means as abundant as the two preceding sulphides of iron, but does occur fairly frequently in veins in igneous rocks, and less frequently in limestones, large quantities of sulphuric acid being made from a deposit in limestone at Ducktown, Tenn. It will be found in most states. When associated with nickel it is an important source for the latter mineral, as at Sudbury, Canada. Pyrrhotite is very like a substance found in meteorites, known as troilite.