BUTTER.

When cream, especially cream in which incipient lactic fermentation has been set up, is subjected to agitation in a churn under proper conditions of temperature the particles of butter therein contained are collected into masses so that the butter can be separated from the residual liquid. This process is technically called churning. The domestic churn in its simplest form is perhaps well known to almost everyone, especially those who have lived in the country. In the domestic manufacture of butter the cream is collected and set aside until sour, that is, until lactic fermentation has set up. When this is sufficiently advanced the cream is placed in a churn, the simplest form of which is a wooden, cylindrical vessel of appropriate size, being much longer than its horizontal diameter. The churn is provided with a dasher, namely a perforated wooden disk with a handle which passes through a hole in the cover. When the churn is charged the butter is produced by agitation with the dasher. In winter time warm water is added to the mixture in order to raise the temperature to the proper gathering point of butter, namely 65 to 70 degrees F. For the same reason cold water is added in the summer time. The art of the dairy maid is shown in the proper regulation of the temperature to secure the best results. When the cream is properly ripened and the temperature is suitable the gathering of butter will be accomplished in from twelve to thirty minutes. In unfavorable conditions the duration of churning may be for a much longer period.

Fig. 20.—Power Churn Ready for Use.—(Courtesy of the Bureau of Animal Industry.)

In dairies and large establishments churning is accomplished by machinery with very different mechanical appliances, but the principle which underlies the process is the same as those outlined above. The accompanying figures illustrate the process of churning by mechanical means in a modern dairy ([Figs. 20] and [21]).

Fig. 21.—Power Churn, Open.—(Courtesy of the Bureau of Animal Industry.)

Treatment of Butter.

—The crude butter secured by churning is subjected to washing and seasoning processes in order to prepare it for the market. The washing or working of butter is accomplished by means of water. The object of this “working” is to separate from the crude butter as much of the curd and other non-fatty constituents of the cream as can be conveniently accomplished. The removal of these mechanical particles not only makes a butter of a higher grade but also one of better keeping qualities. The working of butter also has much to do with its grain or texture, which is one of the characters of butter to which great attention must be paid. The best grade of butter and that which brings the highest price in the market is that which receives no treatment other than that of the washing and working process to which attention has been called. This kind of butter is known as natural or unsalted or uncolored butter, that is, a fresh, sweet product of an agreeable aroma, palatable, of fine texture and grain, and is the best product of its kind for human consumption. It also brings the highest price on the market and, by reason of its method of preparation, the consumer can usually be assured that it is fresh in character.

Salting Butter.

—In the United States, especially, consumers of butter generally require that it shall be salted. For this purpose fine grades of dairy salt are used as free as possible from impurities and consisting of fine particles or crystals which rapidly dissolve in the residual moisture of butter. This promotes a uniform distribution of the salt in the form of brine throughout the mass of butter. The existence in butter of undissolved particles of salt is highly prejudicial to its taste and character. The quantity of salt used in butter is determined by the taste of the consumer. The more salt the butter contains the less value it is as butter and hence the quantity should be limited to the smallest possible amount demanded by the consumer’s taste. Often butters are found in commerce which are so full of salt as to be wholly unpalatable and there is a tendency on the part of the greedy manufacturer to add excessive quantities of salt because it is very much cheaper than the butter itself and thus he hopes to add to the profit of the industry. On the contrary this practice usually results in loss, since such highly salted butter naturally brings the lowest price. The amount of salt which is used in butter should not exceed two percent.

It is a common supposition that salt in butter is a preservative. This is true when used in large quantities, that is, in quantities which render the butter somewhat unpalatable. The very small quantity of salt used purely for condimental purposes cannot be regarded as aiding in any material way the preservation of the product.

Coloring Butter.

—Unfortunately the practice of artificially coloring butter is very prevalent in the United States. Practically all the butter found upon the market, even in the spring and summer, is more or less artificially colored, often with coal tar (anilin) dyes which, to say the least harm of them possible, are open to suspicion in respect of wholesomeness. The practice of coloring butter produced in winter may be regarded as universal, though none the less reprehensible on that account. The object of coloring butter is, undoubtedly, to make it appear in the eyes of the consumer better than it really is, and to this extent can only be regarded as an attempt to deceive. If cows are properly fed during the winter months with wholesome, nutritious food to which a small proportion of roots such as carrots or ruta bagas are added or with yellow maize and clover hay, even in winter time the butter produced will have an attractive light amber tint which appeals strongly to the æsthetic sense of the consumer. The natural tint of butter is as much more attractive than the artificial as any natural color is superior to the artificial. There is the same difference between the natural tint of butter and the artificial as there is between the natural rose of the cheek and its painted substitute. It is claimed, and perhaps justly, that the use of certain vegetable colors, such as annotto, does not introduce any unwholesome substance into the product. Admitting this, we must next ask whether it deceives the consumer. If so, it is difficult to understand upon what ethical principal any plea for the artificial coloring of butter can rest. If it is admitted that there is no valid reason why butter should be colored other than the artificial coloring of foods in general, which is a practice so reprehensible that it is almost universally denounced, its practice cannot be easily defended. The dairymen of our country are honest and honorable and evidently do not clearly see the false position in which the practice of coloring butter puts them. When the dairymen of our country understand that the naturally colored products will bring the highest price on the market and appeal more strongly to the confidence of the consumer it is believed the artificial coloring in butter will be relegated to the scrap pile of useless processes. It cannot be claimed in any sense that coloring of butter artificially ever adds anything to its value as a nutritive substance.

One of the claims for justifying the coloring of butter is that it distinguishes it from oleomargarine. This, however, is not the case since, under the law, oleomargarine may be colored upon the payment of a tax of ten cents per pound. The consumer has at his disposition a complete protection against fraud in the use of oleomargarine by the operation of state and federal laws, irrespective of the tint of the product. Oleomargarine and butter are distinguished from each other by their natural colors and also by their chemical and physical properties and, therefore, there can be no justification for the coloring of butter on the plea that it distinguishes it from oleomargarine. Thus, from every point of view it is evident that the artificial coloring of butter is undesirable. It interferes with the right of the consumer, who should know the exact character of the product he buys, and it stands in the way of the prosperity of the manufacturer by keeping upon the market a cheaper product which tends to decrease the price even of that of better quality.

Standard Butter.

—According to the standard established by Congress butter must contain more than 16 percent water and not less than 82.5 butter fat.

Renovated Butter.

—The law of Congress which controls the manufacture of renovated butter is executed jointly by the Treasury and Agricultural Departments. The quantity of renovated butter produced during the year ending June 30, 1905, was 60,290,421 pounds.

Adulterated Butter.

—The quantity of adulterated butter which was produced under the authority of the Act regulating the manufacture of oleomargarine and butter and on which is laid a tax of 10 cents per pound during the fiscal year ending June 30, 1905, was 3,671 pounds. These data show that the tax of 10 cents per pound laid upon adulterated butter has practically destroyed the manufacture of that article. Normal butter has from 12 to 14 percent of water. It is sometimes rechurned with water to raise the water content to 16 percent. Such a practice results in adulteration whether the content of water exceeds 16 percent or not.

Influence of Food upon Butter.

—The character of butter is very easily affected by the nature of the food consumed by the cow. Butter has the faculty of absorbing very readily odors of all kinds. Foods, therefore, which have characteristic odors impart them to the butter. A most striking instance of this is in the eating of wild garlic. In this case both the milk and the butter are affected to such a degree as to be in many cases unpalatable. Hence foods or substances in foods which are aromatic or odoriferous are likely to impart their peculiar odor to the milk, cream, and butter. Of all the constituents of milk the fat appears to have the highest faculty of absorbing these objectionable odors. Therefore, the feeding of distillery slops is also apt to impart an unpleasant odor to milk and butter, whereas if these slops be dried and their volatile aromatic principle expelled little discomfort is experienced in their use. The physical characteristics of butter are also changed in a marked degree by the character of the food. Butter fat, as has already been indicated, is distinguished from other animal fats by its content of soluble and volatile acids of which butyric is the chief. There are certain kinds of foods which decrease or tend to decrease the content of butyric acid in butter.

Influence on Melting Point.

—The character of the food also has a marked influence upon the melting point of butter. The author showed many years ago that the use of cottonseed meal as food for cows tends to raise the melting point of butter. This was regarded as an index of some value for the southern portion of the country, where a high temperature obtains over a period of six or seven months of the year. If the melting point of butter, which when normal is about 33 degrees C. (91° F.), could be increased to 35 or 36 degrees C. (95° F.), it would be of immense advantage in these warm climates and, in fact, in all parts of the country during the months of July, August, and September. There is no apparent tendency to increase the melting point of butter by feeding other oil cakes.

Transmission of Other Principles in the Food to the Butter.

—Experience has shown that when cows are fed cottonseed meal or its products the quality of cottonseed oil which responds to the color test known as the Halphen test, namely, the production of a red color with carbon disulfid and amyl alcohol, is transmitted also to the butter. In some cases this reaction is extremely faint while in others it is displayed with an intensity which is claimed by some to be equal to that of the admixture of 5 percent of cottonseed oil with the butter. The use of cottonseed meal, on the contrary, does not seem to notably affect either the content of volatile acid in the butter nor its refractometer reading. (Experimental Station Record, Volume 25, Page 716.)