CHEESE.
Historical.
—The preparation of cheese is one of the oldest of the technical processes. It appears that it was known during the time of King David, at least a thousand years before Christ, and the Greeks were acquainted with it before the writings of Homer. Aristotoles and Hypocrates describe the curdling of milk which at that time appears to have been accomplished by the use of the juice of the fig. The use of cheese was very common in Rome in the earlier historical days but the most of it was imported from the North. Cæsar speaks of the preparation of cheese among the German tribes. Cheese must, therefore, be regarded as one of the very oldest forms of prepared food used by man. It probably is almost, if not quite, as old as wine. These historical facts are interesting in showing how from the earliest times man has made use of the natural ferments to prepare food from the raw material. Attention must be called in this connection to the fact that many people claim that such foods as these are not natural foods but wholly artificial. The fallacy of such a claim is not difficult to show. An artificial food is one which is prepared out of materials which, themselves, are not edible food products or, at least, are not digestible or of a character which does not naturally occur by ordinary processes. Artificial foods, therefore, are purely synthetic, that is, made up from the elemental substances, or they are mixtures or compounds. On the contrary a food like cheese or wine is not a mixture or compound but a natural product from materials which themselves are food products. Milk is the raw material of cheese as the must of the grape is of wine. Both milk and must are rich and nutritious foods. The changes which each undergoes are in many respects the same. The must of wine undergoes an alcoholic fermentation and the milk sugar of cheese is subjected to a lactic fermentation and its casein to a proteolytic change which materially alters its character.
Cheese products are a very important part of food materials of the dairy. The term cheese is applied to the solid product produced from milk by coagulation of the casein with rennet or lactic acid and subjecting the solid product thus produced to a process of fermentation and ripening by the addition of appropriate seed material, seasoning, and storage at convenient temperature for varying periods of time. In the precipitation of the casein of milk the fat particles become mechanically entangled and form a part of the precipitate. There is a certain quantity of other milk constituents incorporated in the form of water, milk sugar, and mineral matter in the precipitated mass. The greater part of the other bodies which the milk contains, consisting of the milk sugar and a considerable portion of the soluble mineral matter, are separated in the form of whey. The composition of fresh cheese is that of that part of the milk which is precipitated and which is entangled mechanically in the precipitated matter. The ripened cheese is changed in its chemical constituents mostly as the result of fermentative action upon its nitrogenous constituents, that is, the casein, albumin, etc., contained therein. The ferments tend to change the casein into a more soluble form of protein, while at the same time they develop a flavor and aroma in a way agreeable to the nostril and palate. Various forms of moulds and other organisms grow on and in cheeses which influence their palatability and character. The final product of the ripened cheese varies not only with the nature of the original material as determined by the milk itself but with the character of the preparation and the nature of the organisms and ferments which are active during the ripening period, and also with the time and temperature of storage.
Kinds of Cheese.
—It is not necessary and perhaps it would be impossible to attempt an enumeration of all the various kinds of cheese which are offered on the market. The first classification of cheese depends upon the character of the milk used. The term “cheese” in this country naturally refers to a product made from cow’s milk since that is the principal milk used in the United States for cheese making. The term is used in this manual in that sense and when there is no qualifying word employed it is always understood that the product in question is made from the cow’s milk. This implies that the milk is at least a standard milk, that is, a whole milk, unskimmed and containing not less than 3.25 percent of butter fat. According to the definition fixed by the Congress of the United States the term cheese is applied not only to this product but also to one containing a larger percentage of fat than this. The term cheese applies both to cheese made from milk and cheese made partially from milk and partially from cream. The term “full cream cheese” is also often used in the trade but is likely to be misleading and deceptive. The real significance of the term full cream cheese is that it is made of whole milk or milk unskimmed which contains its full complement of cream. The term “cream cheese” is also often used to indicate a cheese made partially of milk and cream. It is evident that the term cream cheese in this sense is misleading, since it can be properly applied only to a cheese made from cream alone. Such cheeses are made but, inasmuch as cream must have not less than 18 percent of fat in order to be called cream according to the United States standard, the cheeses made from such a source are too oily and fatty for ordinary consumption.
Cheese Made from Goat’s Milk.
—Goat’s milk is also frequently used in making cheese. It is extensively employed in France and Switzerland for cheese making and also in other parts of Europe, and to a limited extent in this country. Some of the varieties of cheese which are most highly prized are made from goat’s milk, such as Roquefort.
Adulteration and Misbranding of Cheese.
—The most common form of adulteration or sophistication of cheese is the misbranding thereof in respect of the country where made or in respect of character. This is a form of deception which has long been established in the trade and one which cannot be condoned or excused. There are certain varieties of cheese whose names should be respected and in fact, in the case of all varieties that have an established character and reputation, their name should not be applied to other articles made in imitation thereof. In this country there is a national law which prohibits the marking of a food or dairy product falsely as to the state or territory where made. For instance, a cheese made in Ohio cannot be marked New York cheese and peaches grown in Delaware cannot be marked California peaches, maple sirup made in Indiana cannot be labeled Vermont maple sirup, etc. The ethical principle underlying this law is one which will meet the approbation of every well meaning man and therefore the extending of this principle to other forms of misbranding is an easy step. If it is a violation of the law to mark a cheese made in Ohio as made in New York it is certainly a violation of the ethical principle underlying that law to name a cheese made in Connecticut Cammerbert. Unhappily, however, there are cheeses made in the United States to which foreign names are given, the universal excuse being that they are cheeses of the same type. In many cases this excuse is not a valid one and in no case is it an accepted one. To name a cheese made from cow’s milk the same as that made from ewe’s milk is a distinct misbranding in every sense of the term. There should be no difficulty in established varieties of cheese made in this country having names which are not deceptive and not intended to mislead the consumer as to the state, territory, or country where made. In one sense all cheese may be said to be of the same type, but because the taste and odor of a cheese made in the United States imitates to some extent that of a cheese made in France is no excuse for giving the French name to the American product. A further illustration of this principle is found in the following: The term Roquefort, for instance, is not properly applied to any cheese product except that which is made at or in the vicinity of Roquefort. In no other part of France can cheese be made bearing the name of Roquefort. The use of the term Roquefort, therefore, in any way upon American cheese is a misbranding and an attempt to deceive which usually is successful. There is not so great an objection to the term Swiss cheese as to Roquefort, but there is the same kind of an objection. The cheese which bears the name of Schweitzer-Käse is very extensively manufactured in Germany and sold under that name. A similar cheese is also extensively made in this country and sold under the name of Schweitzer-Käse. In this case there is no particular location or place which originated the name and has the sole right to use the name Swiss cheese. It is the name of a whole country and not of a location, and yet it is evident that Swiss cheese properly can only be made in Switzerland and not in Germany or in the United States. Any hard, tough cheese in which a large number of holes is found and which on cutting makes a flexible, semi-leathery slice has to a certain extent the appearance and perhaps the taste and flavor of genuine Swiss cheese.
It should not be difficult to find a market for all good cheese made in this country, under appropriate American names indicating their origin. If the term Swiss cheese is at all allowable on a package it should be placed as a minor part of the label and with the statement that it is of that type. Even this transgression is perhaps difficult of excuse.
Artificial Coloring.
—Next to misbranding and misnaming of cheeses, perhaps the most common adulteration is that of artificial coloring. The public taste has been led in the matter of cheeses, especially of American origin, to look for a deep yellow color. This is also associated with the idea of the use of a large quantity of rich, naturally yellow-colored cream. The addition of an artificial color to a cheese never adds anything to its value, and to the really æsthetic eye detracts much from its appearance. The presence of this rich artificial tint is calculated in many instances to excite a suspicion in regard to the character of the cheese and thus interferes with its proper gustation. There is another more serious objection than the one just mentioned, namely, that it is possible from skimmed milk to make a highly colored cheese which would appear to the consumer to be made of whole milk or of milk and cream, and thus a deliberate deception is perpetrated. The consumer of cheese should demand that artificial coloring of all kinds be omitted from cheese products.
Moreover, these colors may of themselves be deleterious in character and there is no restriction, so far as I know, at this time in the United States to prevent a manufacturer, if he so desires or through his ignorance of the use of coloring materials of a poisonous character, from using any amount.[22] The coal tar dyes are cheaper and produce faster and more natural looking tints than the vegetable colors such as annotto and saffron, and hence, unless they are prohibited by law, they are almost universally employed. All of these dyes in a concentrated form are highly poisonous and injurious and several instances are on record of death, especially in the case of young children, from eating concentrated colors. The fact that a poison of this kind is diluted by the cheese is no excuse for its use. The only protection which the consumer has, which is reliable in all cases, is the prohibition of coloring matter in cheese.
[22] Written before the passage of the food-bill.
By Act of Congress of June 6, 1896, coloring matter is permitted to be used in cheese in the United States and doubtless it will continue to be used under this authority until that portion of the Act is repealed or until the consumer demands an uncolored article. The pure, natural color of the cheese is universally acknowledged to be best, most palatable, and most desirable.
Preservatives.
—Fortunately there is little to be said in regard to preservatives in cheese because they are almost unknown. The addition of a preservative to a cheese at the time of its production would so seriously interfere with the ripening process as to defeat the purpose of storage altogether. Hence in so far as preservatives are concerned there is little danger of adulteration.
Impure Raw Materials.
—If cheese be made of standard milk as provided for by the commissioners it must be made of pure, wholesome material. On the contrary, inasmuch as there is no official inspection of cheese factories, it is entirely possible through carelessness, ignorance, or design to use in the making of cheese milk which may itself be infected. Cheese made from such milk of course would carry the infection of the milk. This is a sort of adulteration which can only be excluded by careful sanitary inspection of cheese factories.
Filled Cheese.
—Formerly there was a very considerable adulteration of cheese by manufacturing it from skimmed milk and supplying from an artificial source the necessary fat. Cottonseed oil, lard, and other edible oils are used for this purpose.
Composition of Filled Cheese (Circular No. 11, Bureau of Animal Industry).
—Neutral lard is the principal fat which is substituted for milk fat in filled cheese. It is used to the extent of two or three pounds for every 100 pounds of skimmed milk. The principal objection to a filled cheese is not on account of its containing lard, which in itself is not unwholesome. But lard is an entirely different fat from milk fat, and differs in the character of the fermentation which takes place. The characteristic flavors and odors which are contributed by the milk fat in the cheese are entirely wanting, and the cheese is devoid of aroma and flavor and is nothing more than a mixture of casein with lard. Filled cheese is such a poor imitation of the genuine article that it can never have any very great vogue, and especially under the present law which requires it to be labeled and the payment of a tax. The law relating to [filled cheese] is found in the [appendix].
A filled cheese which is on the market not properly stamped and duty paid in harmony with this Act of Congress is adulterated, and they who make and sell it are amenable to the law. The annual report of the Commissioner of Internal Revenue for the year ending June 30, 1905, shows that no receipts were obtained by the tax on filled cheese during that year. If any was made it was made surreptitiously and in defiance of the law.
From the above data it is seen that the manufacture and sale of filled cheese in the United States is almost a thing of the past and this form of adulteration, assuming that the law is thoroughly executed, is not now likely to be often met with.
Cottage Cheese.
—Cottage cheese is a term applied to a product which is usually only a raw material of cheese. It is the fresh, precipitated, and unripe milk product, above described as used in cheese making. It is a highly nutritious and very palatable product, usually prepared at home and not suitable for keeping or transportation. It is often made from sour milk in which the casein is coagulated by the natural development of lactic acid. The sour milk is placed in a cloth bag and the whey allowed to escape by gravitation. The final portion of the whey may be forced out by pressure. The residue, when properly seasoned with salt or in any way to suit the taste of the consumer, is very palatable. Cream is often added to this residue which increases the normal amount of fat which it contains.
COMPARATIVE COMPOSITION OF AMERICAN AND EDAM CHEESE.
The chemical composition of some of the principal varieties of cheese are shown in the following table:
| Water. Percent. | Ash. Percent. | Fat. Percent. | Protein. Percent. | |
|---|---|---|---|---|
| American cheese, | 27.5 | 4.1 | 32.5 | 28.38 |
| Edam cheese, | 36.34 | 4.24 | 31.17 | 22.28 |
The data show that cheese is essentially a nitrogenous and fat food, containing only small quantities of carbohydrates, and therefore it is not a complete ration. It is a ration, however, which is complementary to a highly starchy diet such as rice or maize bread or potatoes. Bread and cheese or potatoes and cheese or rice and cheese, therefore, make a well balanced diet, highly nutritious, easily digestible, and quite palatable.
Manufacture of American Cheeses.
—The large cheeses which are principally found upon the American market may be said, in general, to resemble the Cheddar type, although the calling of these cheeses by the name “Cheddar” is misleading, and to that extent a misbranding of the product.
There are two common methods of making these cheeses which are in vogue in the United States, namely, the “stirred curd” or “granular” method and, second, the Cheddar method. (Bulletin 104, Department of Agriculture of Pennsylvania, 1902.) The latter one is the more extensively used. The second product does not differ essentially in character from the first, though the latter method, it is claimed, gives a more solid cheese and one of more uniform character and with a slightly less content of moisture. Since the Cheddar method has practically come into sole use, displacing the first method, a description of the Cheddar method alone will be sufficient to illustrate the method of making large cheeses which are now so common on the American market and which have such a well merited reputation. The process is divided into eight parts: First, coagulating the milk; second, cutting the curd; third, heating the curd; fourth, removing the whey; fifth, cheddaring the curd; sixth, milling the curd; seventh, salting and pressing the curd; eighth, curing the cheese.
Rennet.
—As has been said in the description of cheese making, the material which is most useful in the precipitation of the curd is rennet. The rennet is the secretion of the stomach of various animals, that of the calf being most highly priced for cheese making. The fourth stomach of the animal is the one which is used in the manufacture of rennet. The aqueous extract made from these stomachs contains a ferment which has the property of coagulating casein in a very high degree. One part of good rennet preparation from healthy stomachs of calves will coagulate 1000 parts of milk. In former days rennet was freshly made and used at the factories. At the present time it is largely prepared on a commercial scale and sold to the cheese maker. It is highly important that the rennet used in cheese making should be of the best quality, as an inferior grade gives a bad taste and color to the cheese. Just as in the manufacture of fermented beverages and making of bread the character of the yeast is a dominant factor in the nature of the finished product, so it is even to a greater degree in the case of rennet. Those who purchase the rennet already made should therefore be certain it is of a quality to give the desired character to the cheese. The greater the amount of milk fat in milk the larger the proportion of rennet, since the milk fat protects to some extent the casein from the action of the ferment. Experience has shown also that during the summer the rennet acts more readily upon the milk, probably due to the higher temperature. Care should be taken to avoid the use of any excess of rennet, since anything more than the amount necessary to conduct the coagulation is apt to add an unpleasant flavor to the cheese. The curd also in such cases is less cohesive and makes a tougher and drier product which does not lend itself so readily to the ripening process. For this reason the rennet which is to be used should always be tested in small quantities of milk beforehand in order that the proper proportion to be used may be known so that the process in a large way may be conducted with certainty and not by guess. (“British Dairy Farming,” by Jas. Long.)
Rennet is sometimes treated with borax to preserve it during transit. In such cases the borax may not all be removed by the whey and is consequently found in ripened cheese. Its introduction in this way should be avoided.
Coagulating the Milk by Rennet Extract.
—This process is often termed by the cheese makers “setting the milk with rennet.” The milk which is used for the purpose of cheese making should be, in the technical language of the cheese maker, “ripe,” that is, containing a sufficient quantity of lactic acid. The principal method of producing the proper amount of lactic acid in milk is by keeping it warm, namely, at a temperature of about 84 degrees. At this temperature the most favorable conditions exist in milk for the rapid growth of the lactic acid ferments. If the natural ferments which produce lactic acid are not in sufficient quantity in the original milk it is better, rather than to wait too long a time, to start the development of the lactic acid by adding an artificial ferment. Lactic ferments are specially prepared for this purpose, or some previously ripened milk may be added to the mass. This is called a “starter.” From two to five pounds of “starter” are usually required for each one hundred pounds of milk. The degree of ripening is ascertained by measuring the quantity of lactic acid present. The proper condition of the milk is tested by means of a rennet preparation and if the milk will coagulate, when thus tested, in about one minute or a little more it is an indication that a sufficient amount of acid has been developed to add the rennet for the proper coagulation of the milk. It is important to have the milk in just the right condition in order that the proper operations in cheese making may go on uniformly. Care must be taken, however, not to have too much lactic acid in the milk. For instance, 0.2 of one percent is too great, and such a milk is very liable to give trouble in subsequent operations. In the curding of milk by rennet the temperature should be kept between 82 and 86 degrees. The amount of rennet extract, of course, varies with its character and strength, and this is best determined by the cheese maker’s experimenting in order that the proper quantity to be added to the great mass of milk may be known beforehand. A sufficient quantity of rennet extract should be used to curdle the milk in fifteen or twenty minutes for a quick-curing cheese, and in thirty to forty minutes for a slow-curing cheese. The rennet extracts in common use are added at the rate of from one-half to five ounces for 1000 pounds of milk. Before adding, the extract should be diluted with from 20 to 40 times its volume of water at a temperature of from 85 to 90 degrees. The rennet thus diluted acts with uniformity on the milk, preventing the production of curd of a lumpy character. Previous to adding the rennet extract the mass of milk is thoroughly stirred in order to mix the fat therewith and the dilute rennet added evenly and slowly with constant stirring which is continued for several minutes. A gentle stirring of the surface of the milk should be continued until the curd is at least half formed, in order that the fat may not separate. After the stirring is finished, a cloth is placed over the top of the vat to keep the surface of the milk from cooling, and the milk is then left undisturbed until the coagulation is complete. The coagulation goes on gradually until the whole mass of milk is one solid coagulum produced by the changing of casein into paracasein.
Cutting the Curd.
—In order that the whey may be separated it is necessary that the curd be cut into pieces. The smaller the pieces of curd, the more rapidly will the whey escape. As soon as the curd is formed it shows a tendency to contract and this tends to force out the whey. By cutting the extent of the surface from which the whey can exude is amplified and the rapidity of the process is enormously increased. The time at which the curd is to be cut is one of great importance and is determined by the skill and experience of the cheese maker. If the curd is cut when it is too soft there may be large loss of fat and a decreased yield of cheese. If the curd is too hard the whey is more difficultly removed and the quality of the cheeses is not so fine. The following test is used to determine when the curd is in the right condition to cut. The end of the index finger is inserted obliquely into the curd half an inch or more and then slowly raised toward the surface. If the curd breaks apart with a clean fracture without leaving any particles on the finger and the whey which exudes from the broken surface is clear and not milky it shows the proper time has come for cutting. Specially devised knives are used for cutting the curd, which leave it in small cubes of about one-half inch surface. Skill in the use of the cutting knife is important and can only be acquired by proper experience.
Heating the Curd.
—As soon as the curd is cut the whey begins to go out of it and the curd settles to the bottom of the vat, the whey being of a higher specific gravity than the curd. After the pieces of curd sink to the bottom the surface easily reunites and, when broken apart, additional fat is lost. As soon, therefore, as the curd is cut the whole mass is kept in gentle motion by hand stirring or with a wire basket designed for the purpose, care being taken to avoid breaking or comminuting the cubes. When properly stirred the whey appears clear and is free of small particles of curd.
The curd contracts and hardens during this process, and soon reaches a condition when the surface does not adhere so readily. The vat should be kept warm during the process of separation of the whey, the temperature being raised to about 90 degrees and finally, toward the last, to 98 degrees, about blood heat.
Separating the Curd.
—The precipitated curd is left in contact with the whey for some time, and during this period some of the lactic acid in the whey unites with the paracasein. The setting of the curd is finished when a small mass which has been squeezed in the hand to remove the whey is pressed against a bar of iron heated to little short of redness, and it is found that there is left, adhering to the iron, fine silky threads. These threads are formed by the compound of lactic acid and paracasein, and the more of this compound there is the longer will the strings be. When the curd shows by the hot iron test strings one-eighth inch long it is an index that the time has arrived for the separation of the curd from the whey.
Gathering the Curd.
—After the whey is removed the cubes of curd are left in the bottom of the vat until they mat or pack together, a process which is technically known as cheddaring. The curd is sometimes removed from the vat and placed on a special apparatus for this purpose called a curd-sink. When the curd has matted together, forming a solid mass, it is cut into blocks 8 × 8 × 12 inches. These blocks are turned in the vat in order to facilitate the removal of more whey. The blocks of curd are carefully placed, one over the other until they form a large mass.
The process of solidifying or cheddaring accomplishes two purposes:
First, the whey is expelled to a considerable extent and, second, the lactic acid unites with more of the curd, changing not only its chemical composition but also its physical state from a spongy, tough, rubber-like consistence, with a high water content, to a mass having a smooth, velvety appearance and feeling, and a soft, somewhat plastic consistency.
Milling the Curd.
—This process consists in cutting the lumps of curd into small pieces in order to introduce the salt and to handle it more readily when it is to be placed into hoops for pressing. This process is done by special mills which avoid, in so far as possible, the loss of fat.
Salting and Pressing.
—Salt is added for several purposes, chiefly for flavoring, but it also has other uses. It aids in removing the whey,—it hardens the curd and it checks or retards the formation of lactic acid. Excessive salting, however, is injurious. From 21⁄2 to 3 pounds of salt should be added to the curd made from 1000 pounds of milk. Before putting in the press the curd is cooled to a temperature of about 80 degrees, and after putting into the mold it is subjected to pressure to give it a proper form, rather than to remove the whey which is practically all gone by this time. If the whey has not been properly removed before the cheese goes into the press it is almost impossible to get it out then. The pressure should be uniform and continued for at least twenty-four hours. If a screw is used the pressure should be light at first and gradually increased. After the cheese has been in the press about an hour it is removed, turned, a cloth adjusted about it, and the entire surface wiped carefully with a cloth wrung out of hot water.
The sizes in which American cheeses are made depends largely upon the market, the more common size being 15 inches in diameter, and the cheese weighs from 60 to 65 pounds. There is also a very large manufacture of cheese seven inches in diameter, known as “Young Americas” and weighing only from 8 to 10 pounds.
Curing.
—The higher the temperature to which cheese is exposed in curing the more rapid the curing process will take place, but the poorer the quality of the cheese. Experience has shown that a low temperature, 55 degrees F. or even less, gives much better results, although it requires a greater length of time. If cured at a higher temperature the fat is apt to exude, and will not be evenly distributed in the cheese. It is, therefore, more profitable, as well as better for the consumer, to cure at low temperatures, producing a superior quality with less loss of moisture and a cheese which sells for a better price.
Moisture in the Curing Cellar.
—The cellar in which the curing takes place should contain air with a proper degree of moisture. The relative percentage of moisture in the air as compared with the total amount which it can hold should be from 65 to 75. This is determined by placing in the curing room a hygrometer which registers the degree of saturation.
Qualities of American Cheese.
—The quality of cheeses is judged by (1) flavor, (2) body, (3) texture, (4) color, and (5) general appearance. In regard to flavor it is impossible to describe what is meant. Only the connoisseur can determine properly whether a cheese has a flavor which is sound, healthy, and indicative of the highest quality. The cheese flavor should be free from any admixture of other flavors. Cheese resembles butter in this respect, that it absorbs and then gives off foreign flavors with great facility. Therefore in the whole process of cheese making care must be exercised to exclude every odor or flavor of an undesirable character from the cheese house.
Flavor.
—Under flavor also may be described taste, which should be of that biting, incisive character due to proper development of ripening and its attendant bacterial and enzymic products. The various foreign flavors in cheese may be due to the odor of cows or the stable or may suggest “rotten eggs,” or it may be the flavor of rancid butter due to the decomposition of butter fat in the cheese.
Body.
—This is also a term which it is difficult to define. An American cheese is said to have a perfect body when it is solid, firm, and smooth in substance. This quality is ascertained by pressing the cheese between the fingers. When it does not press down evenly between the finger and thumb it is said technically to be “corky.” It is smooth when it feels velvety-like and is not harsh or gritty.
Texture.
—The term texture applied to American cheese refers mainly to its compactness. It is nearly related to body. The texture may be fine and close or porous. The texture is perfect when a cut surface of the inside of the cheese presents to the eye a solid, compact, continuous appearance, free from breaks, holes, or lumps. Cheese should not show any visible or separated moisture or fat. The texture of American cheese should be smooth, free from breaks, and fairly hard. The bandage should be smooth and neat, extending over the edge on each end of the cheese about two inches.
Color.
—A true and unadulterated cheese should have only the color of the milk from which it is made, and any other color incident to ripening which is usually green. Unfortunately cheeses of American origin are often artificially colored. An over-deep yellowish or reddish tint, therefore, should be regarded as a mark of inferiority. Artificially colored cheese should not rank as high on the market as that of a natural tint, which is much more pleasing to the eye and much less objectionable to the æsthetic taste. Color is often added to conceal inferiority in the milk used.
The sides of the cheese should be straight and of uniform height all around.
The following scale of points is used in judging cheese, according to the above qualities: Flavor, 45 to 50; texture, 30 to 35; color, 10 to 15; general appearance, 5 to 15.
Cream Cheese.
—This is a soft cheese which is rapidly growing in popularity. It is made from rich milk or milk and cream mixed together. It resembles in general Neufchatel, but it is richer in butter fat and is put up in a different form. The temperature of the room in which the cheese is made is quite important. It should be kept as nearly as possible at 75 degrees. The milk is first warmed to 70 degrees and run through a separator by means of which the cream is taken out, together with one-half the volume of milk. This makes either dilute cream or very rich milk, as you may choose to call it. The cream is heated to 84 degrees and about four or five ounces of rennet extract added per thousand pounds. The rennet is carefully and gradually stirred into the mixture, using about fifteen minutes for the addition. The mass is then allowed to remain at rest until whey is seen around the sides. The whey is then removed by draining, the resulting curd pressed and mixed with about 3 percent of salt. The cheese is not subjected to a curing process. It is molded into flat, thin cakes about 3 by 4 inches, wrapped in parchment paper, and in this condition packed for shipment.
Manufacture of Foreign Types of Cheese in the United States.
—The improvement of cheeses made in the United States by securing different forms of ferments and utilizing the best method of setting, pressing the curd, and ripening used in other countries is worthy of all encouragement. Unfortunately a disposition has arisen in our country of giving the names of foreign varieties to the domestic articles. Many fancy domestic cheeses are sold under strictly foreign names such as Cheddar, Stilton, Cheshire, Schweitzer, Limburger, Camembert, Brie, Roquefort, etc. In fact there seems to be no limitation upon the adoption of a name already identified with a distinct type and locality. Such a tendency is greatly to be regretted and perhaps it is only necessary to point out to our people the ethical offense which they are committing by such practices to secure their discontinuance. It is, however, a perfectly legitimate undertaking to import the ferments which produce the famous cheeses of the world and utilize them to the fullest extent in cheeses of American origin. This, however, should be done in such a way as to carefully avoid applying the name of the original article to the domestic product. Perhaps it would be no ethical offense or no very great offense to place upon the labels of the cheese products a statement that they are of the same type as the foreign product they imitate. This, however, should be an explanatory phrase and not a part of the label which attracts principal attention. It is far better that a manufacturer should adopt some local name which would become identified with his product, and thus become a valuable trade-mark. The attempt to pass domestic cheese under foreign names is an offense against good ethics and also against the law. It is nothing more nor less than misbranding, and cannot be justified even in the absence of a law forbidding it.
Success with Foreign Ferments.
—Considerable success has attended the introduction of the foreign processes into the United States, together with the ferments which produce the cheeses abroad. The environment, however, cannot be imported and therefore the ferments may rapidly assimilate different properties under changed conditions, and the continued importation of fresh ferments may be necessary to preserve the type of cheese. Some of the principal types of foreign cheeses made in the United States are those which are mentioned above. A particularly excellent study has been made of the process of making a Camembert type of cheese in this country. (Bureau of Animal Industry, Bulletin 71, 1905.) This particular cheese is a type of Camembert which is made at the Storrs Agricultural Experiment Station of Connecticut. For these experiments a cheese maker familiar with the Camembert manufacture in France was secured. The method of making the cheese and also of separating the curd and ripening was as nearly as possible like that used in France. The style of the packages was the same, so that from external appearances it would be quite difficult to distinguish them from the genuine Camembert cheese of France. The success attending these experiments shows that it is possible to improve domestic cheeses by scientific effort in the direction of using the proper ferments. These soft cheeses made in Connecticut were of good quality and had something of the flavor and type of the Camembert itself, though it was not difficult for even a novice to distinguish the two varieties from one another.
These studies above referred to have resulted in a marked degree of progress in the knowledge of the real changes which take place in the ripening of cheeses. The officials in charge of the work differ somewhat with the author in respect to the character of the product, claiming that the making of Camembert cheese is not dependent upon uniform conditions obtained only in certain localities but rather on securing the proper cultures and conditions which are possible almost anywhere. The fact of the case is that the cheeses made at the Connecticut station are probably made under much more scientific conditions and much more rigid control than the real Camembert cheese made in France. The success which attended these efforts is only a proof of the statement made above that the introduction of these processes for making fancy cheeses in this country will doubtless result in the development of types of American origin of peculiar flavor and quality. Such cheeses when properly named and not confused with those of foreign origin will become quite as familiar and well known, both at home and abroad. (Bureau of Animal Industry, Bulletin 82, 1906.)
Sage Cheese.
—The consumption of the variety of cheese known as sage cheese is not very large at the present time in the United States and is restricted to certain localities, yet it is rapidly growing in favor. Consumers who are accustomed to it are willing to pay a larger price for it than for ordinary cheese. Sage cheese is made exactly in the same manner as that described for the manufacture of Cheddar. The flavor of sage is imparted in three different ways, first, by adding the sage extract or tea to the milk; second, by adding the extract to the curd before salting; third, by adding the sage leaves to the curd before salting. The latter method is found to be the most satisfactory requiring the least amount of sage to give any definite flavor. Three ounces of sage leaves are found to be sufficient to flavor the curd from 1000 pounds of milk. The stems and impurities of the sage leaves are carefully removed and the leaves ground to a fine powder before mixing with the curd (Michigan Board of Agriculture, 1904).
Principal Cheeses of England.
—The principal English cheeses are Stilton, Cheshire, Cheddar, double and single, Gloucester, Derby, and Leicester. According to Dr. Voelcker, the finest flavored cheese is Cheshire, which differs from any other in being made from milk which is perfectly sweet, and some authors think its peculiar aroma is due to this fact. On the contrary, the more general opinion is that the best cheeses are made from milk slightly sour rather than that which is perfectly sweet.
Cheshire cheese is manufactured by mixing the evening milk, which is kept cool over night, with the morning milk, and then warming the mixture until the temperature is about 90 degrees. The proper quantity of rennet is added and when the cheese is to be extremely yellow also some annotto. After thoroughly mixing, the mass is left for nearly an hour, by which time the coagulation is completed. The next operation is the breaking down or cutting up of the fresh curd, and this is an important process. Upon the care which is exercised in doing this depends in a large measure the richness and quality of the finished product. When properly manipulated the whey which is separated will be of a greenish color and clear, while the proper combination of milk fat and casein which is secured in separating the whey will make a cheese of first class quality. The curd is so dense as to naturally separate from the whey by deposition, and the latter is thus drawn off by a stopcock properly placed in the vat. The curd is then placed upon a cloth stretched over lattice work in order that the separation of the whey may be complete. Finally before passing to the cheese house the curd is treated with eight ounces of salt to twenty pounds of curd. After the cheese is molded it is placed in a warm room for one or two days, and then taken to the press house where it is subjected to the usual pressure. The pressing process is continued by wrapping the cheese in dry cloths and subjecting to new pressure every day for five or six days. The cheese is then removed to the ripening cellar where it is turned two or three times a week. It is ripe and ready for consumption in less than one year. There are a great many variations from this method of making Cheshire cheese, but they all follow the same general plan.
Manufacture of Cheddar Cheese.
—The cheese is made in various parts of England though chiefly in Somerset, the period of manufacture extending from April to November. Cheddar cheeses are made in large sizes varying from 60 to 100 pounds each. The temperature of precipitation for Cheddar cheese is somewhat less than for the Cheshire cheese, being about 80 degrees. Rennet is used solely in the coagulation, lactic acid not being liked for that purpose. In the making of Cheddar often some of the fat escapes in the whey and this is afterwards collected and made into butter. Two pounds of salt to 100 pounds of curd are used.
Derby cheese
is a name applied to cheese made in Derby. The Cheddar system of making it is usually employed.
Gloster cheeses
are made on the same plan as that of the Derby and do not need any further description.
Leicester cheese
is a variety of cheese which is very popular and made chiefly in the county of Leicester. The coagulation of Leicester cheese is made at a little lower temperature than that previously described, varying from 76 to 84 degrees. The curd is allowed to stand for about one-half hour before it is broken up and the whey separated. The best manufacturers of cheese disapprove of the use of artificial coloring and it may be said that eventually it is pretty certain that all cheese makers will come to the same conclusion. The use of coloring matter in cheese, even of annotto, adds nothing to its richness, and tends to deceive the customer into thinking that the milk employed was richer in cream than it really was. The Leicester cheeses are small in size compared with Cheddar. About eleven pounds of milk are used to make an ordinary cheese.
Stilton cheese
is probably the most familiar and highly prized of all English varieties. It is not always to be obtained, and many imitations of Stilton are made and bear its name. The name it bears is from the name of the town where it was first, and is now, made. It is a cheese which has been known for about a century and a quarter. It is principally made between March and September and solely from the milk of cows fed on natural pasture, that is, for the finest variety. The use of artificial food for the cows is at once detected in a change for the worse in the character of the cheese. At first the rennet employed was made from the stomachs of lambs instead of cows and in the olden times the cheeses were not considered to be sufficiently mellow and ripe until they were two years old and exhibited spots of green in the interior.
The most approved modern process of manufacture is mixing the morning and evening milk and bringing it to a temperature of 79 degrees. Rennet is then added and the mass allowed to stand for about an hour and a half. The curd is removed into cloths set in frames for the purpose of allowing the whey to separate. Usually about an hour is allowed for the natural separation. The cloths are then tightened and brought closer together to produce slight pressure and placed in a cheese tub, several of them together, where they are allowed to remain for twelve hours. Usually a longer time is allowed before the curd is cut up. The salt is added in proportion of one pound to 60 pounds of fresh curd. The curd is then placed in tin cylinders with perforated sides, the cylinder being 12 inches deep and 12 inches in diameter, and put in a room at about 65 degrees to favor the separation of the whey which requires from six to seven days. The cheeses are then removed from the cylinders, brought into proper shape by a knife and wrapped with strong cotton cloth and allowed to remain for twelve days longer when they are removed to the drying room and kept at 65 degrees. During this process the original curd placed in the cell loses about one-half its weight so that ten pounds of curd in the end make five pounds of cheese. A very common method also is to make cheese twice a day from morning milk and evening milk separately. Extra cream is often added in making Stilton cheese, only whole milk or milk and added cream being used. The principal point to be considered with curing is the regulation of the temperature.
Other varieties of cheese which are known in England are mostly named from the localities where they are produced and partake in general of the character of cheeses already described. These are Lancastershire, Wensleydale, skimmed milk cheese, butter milk cheese, potato cheese, and various forms of soft cheese or those used without being allowed to ripen for any length of time.
Varieties of Cheese Made in France.
—There is a general idea that France is pre-eminently a cheese making country and this is true in so far as the making of certain brands of cheese which have international reputations is concerned. France, however, according to statistics, imports a larger quantity of cheese than she exports though probably the value of her exports is greater than the imports because of the high character and price of the exported articles.
Manufacture of Camembert.
—The first cheese of this variety was made in 1791 by Marie Fontaine on a farm in the community of Camembert, near Vimontiers. The period of manufacture of Camembert cheese extends from March to September. It is made from whole cow’s milk from which none of the cream has been extracted. The rennet is added at the temperature at which the milk comes from the cow as nearly as possible and the milk is artificially heated, the morning and evening milk being mixed, to this temperature. After the addition of rennet the milk is gently stirred for two or three minutes, a wooden cover placed over the pan, and left for five or six hours. The curd is sufficiently set when touched with the finger it does not adhere thereto. The curd is removed from the pan by a spoon and put into cylindrical metal molds open at the end and from these molds the whey is allowed to escape. It requires about two liters of milk to make one cheese. The whey is allowed to drain for about two days. After that time the mold is turned, a little fine white salt placed upon the top and allowed to drain for another day. After about 48 hours the cheeses are taken from the molds and salted. They are then placed in the drying room upon racks covered with straw. The drying room must be well ventilated and the air which is blown in for ventilation must be strained to be free of dust and insects. Care is taken also to exclude the sunlight, as this is very injurious to the proper development and ripening of cheese. The cheese remains in the dryer from 20 to 25 days. The ripening cellar is the next point to which the cheese is removed, and this cellar is kept as nearly as possible at 50 degrees F. The cheeses remain in the ripening cellar about 30 days, during which time they are frequently turned and carefully watched. The progress of the fermentation which takes place in the cheese is indicated by its appearance. In modern times the manufacture of Camembert cheese is continued practically throughout the whole year, but the artificially ripened cheese, that is, made during the winter by the aid of artificial heat, does not compare in quality with the product which is naturally ripened during the summer months. The manufacture of Camembert cheese has extended to a considerable distance from the original village, but it is all made in that part of France.
Emmenthaler Cheese.
—Emmenthaler cheese is a variety of Swiss cheese of the same type as Gruyère. It is sometimes called the “cart-wheel” cheese on account of its immense size. These cheeses are sometimes three or four feet in diameter and of a disk-like shape, something like a wooden wheel sawed out of a round tree. It is a cheese which was originally made in Switzerland, although the manufacture of it has spread over into that part of France bordering Switzerland. It has the general character of Swiss cheese in texture, also in composition and nutritive value.
Brie Cheese.
—This is one of the most famous of French cheeses. It is made in the form of a round flat mass about 16 inches in diameter for the grande Brie and 12 inches in diameter for the petite Brie. The thickness of the cheese is about one inch. The method of preparation is not very greatly different from that of cheeses in general. During the curing process, as in the case of Camembert, mould develops, especially on the outside of the cheese, and the change which goes on in the interior breaks down the casein, forming a creamy mass of a strong, piquant flavor. The mould which grows upon the outside of Brie cheese gives it a strong odor which reminds one of decomposition. Brie cheese might be said to resemble in general properties the Camembert variety of cheese.
Roquefort
cheese is a very popular cheese made in France from sheep’s milk. When properly ripened it shows a green mould. It is made in a particular way at Roquefort, and according to König has the following composition:
| Water, | 36.85 | percent |
| Fat, | 30.61 | „ |
| Proteids, | 25.25 | „ |
| Lactic acid, | 1.90 | „ |
| Ash, | 5.39 | „ |
Port Du Salut.
—This variety of cheese has a most deserving popularity, not only upon the Continent but in the United States. It is, however, not so generally known in this country as the Roquefort and Camembert varieties. It was long manufactured by a secret process by the Trappist monks of Bricquebec in the Department of Manche.
The secret of the manufacture of this variety of cheese is guarded with the same jealousy by the monks as is the secret of making the chartreuse liqueur. Port Du Salut is always put up in very small packages of cylindrical form, flat, and about one inch in thickness. The cheese has a number of holes, in which it resembles the Swiss cheese. Its flesh, however, is mellow, and does not have the toughness nor solidity which characterizes the flesh of Swiss cheese. Although the monks’ secret has been well guarded the general method of its manufacture has been described (“Cheese and Cheese Making,” by Jas. Long and John Benson). The milk is brought to a temperature of 86 degrees F., and is treated with rennet in such a way as to separate the curd in about one-half hour. The separation of whey is secured in the usual manner, first, by allowing broken curd to stand, and afterwards by pressure. A peculiar form of pressure is said to be used by the monks,—a number of screws are placed side by side on a beam and a number of cheeses may be pressed at the same time. The pressure is applied solely by the hands and so is not very severe. After pressure the cheeses are placed in a ripening cellar, which is kept at about 54 degrees F. Care is taken in the ripening that the cheese does not become too dry.
Pont L’Evêque
cheese is well known upon the Continent, especially in France where it is made. It takes its name from the village where the manufacture is carried on, which is not very far from Havre. The cheese is usually put up in a square or oblong package about one inch in thickness and of a size weighing about one pound. It has a tough crust and may be kept for some time after it is ripe with safety. The milk is set at a temperature of 88 degrees and a sufficient amount of rennet added to produce precipitation of the curd in about fifteen minutes.
When the curd is stiff enough to be cut and removed it is placed upon a mat made of rye straw through which the whey is allowed to filter. As the whey runs off the curd becomes tougher and the mat is brought together in such a way as to exert gentle pressure. This separation of the whey is continued until the curd can be placed in metal molds which vary in size according to the size of the intended cheeses. The cheese is ripened at a temperature of about 58 degrees in a humid cellar so as not to lose too much water.
Gervais
cheese belongs strictly to the family of fancy cheese, being made of a mixture of milk and cream. It is produced in large quantities in France and finds almost an exclusive domestic market. It is named for its manufacturer, M. Gervais. The mixture is set at a very low temperature, about 65 degrees. The rennet which is used is diluted with water and added in small quantities so that the curd does not separate for eight or ten hours. The whey is separated in a cloth bag and under very gentle pressure. The cheeses are usually sold in only a partially ripe state and the cheese combines the flavor of both cheese and cream.
Bondon
cheese is another cheese which is made largely in the region of Rouen. The size of the cheese is usually very small, from seven to nine being made from a gallon of milk. The method of manufacture is more like that of Gervais and differs from it chiefly in being made solely from milk instead of a mixture of milk and cream.
Limburger Cheese.
—Limburger cheese is one of the most famous of the different varieties of foreign cheese, chiefly because of its bad odor. This odor is due to specific forms of ferments introduced during the ripening process. Generally Limburger cheese is made from pure milk, but occasionally skimmed or partially skimmed milk is used. The milk is set at rather a high temperature, from 92 to 100 degrees. After the coagulation has taken place the curd is broken into pieces the size of a hen’s egg and allowed to settle to the bottom of the kettle as the whey separates. In England a copper kettle is usually employed for the testing vessel. After the whey has separated the curd is taken out and placed in rectangular molds with perforated bottoms, then laid on tables so that the remaining portion of the whey may drain off. The molds are turned from time to time to promote the separation of the whey and to make the cheeses keep their form. The cheeses are next placed in rows on a flat table with thin pieces of boards between them and subjected to light pressure. During this time they are salted by applying salt externally and rubbing the surface at frequent intervals for three or four days. The salt dissolves and permeates the mass. During the salting and pressing the cheeses are kept at a uniform temperature of about 60 degrees. The curing takes place in cellars, well ventilated but very moist, at a temperature of about 60 degrees. As the cheeses ripen they grow soft. The curd takes on its characteristic greasy appearance at the time of the ripening, becoming, at first, a yellow and then a reddish yellow. The softening begins on the outside and proceeds toward the center and the cheese is considered to be marketable when one-fourth of it has taken on its characteristic texture. The softening of Limburger cheese is due to a ferment which breaks down into a soft mass the casein or paracasein of which the cheese is largely composed. By using the same kind of ferments and by following the same process, imitations of Limburger cheese are made in the United States and other countries. These imitations, however, never equal the original in the character of the product nor in flavor or taste, and should not bear the name of the real article.
COMPOSITION OF LIMBURGER CHEESE.
| Water, | 35.7 | percent |
| Fat, | 34.2 | „ |
| Casein products, | 24.2 | „ |
| Milk sugar and undetermined, | 3.0 | „ |
| Ash, | 2.9 | „ |
Limburger cheese was first made in the Province of Lüttick in Belgium. It has, however, come to be considered chiefly as of German production. The chief cause of the putrefactive fermentation which takes place in Limburger cheese is the extremely moist condition in which it is kept. For this purpose the atmosphere of the ripening cellar should be almost saturated with aqueous vapor, containing at least 95 percent of its maximum degree of saturation. This moist atmosphere, together with the low temperature at which the curing takes place, keeps the cheese soft and promotes the putrifactive ferments. Under these conditions the surface soon begins to get shiny and soft and changes from white to a reddish yellow. This change makes its way to the center, converting the harsh curd to a soft condition. The time required for this softening of the cheese is from four to six weeks. (“Cheese Making,” by John W. Decker.)
Edam Cheese.
—Edam cheese is one of the most famous of the cheeses of Holland. It is made at the town of Edam, situated on the Zuyder Zee, about twelve miles northeast of Amsterdam. The milk from which Edam cheese is made should be properly acidified as has already been described. The coagulation takes place and the curd is separated much in the same manner as is used in the manufacture of Cheddar cheese. The curd is held for a time in the vat in a granular condition in order to develop greater acidity and until it will string one-half inch or one inch on the hot iron already described. It is then ready for the mold. The molds are of such a character as to give the cheese a spherical shape about six inches in diameter. Each cheese weighs about four pounds. It has a perfectly solid texture and its flavor is something like that of old Cheddar, except that it is a little more salty and somewhat harder. It is cured at a temperature of about 60 degrees and at a humidity of about 80 degrees. The curing period is somewhat longer than for most cheeses, lasting about eight or ten months and even a year. A slow curing is particularly necessary in the production of Edam cheese.
Coating with Paraffine.
—In the curing of cheese sometimes it is coated with paraffine to avoid loss of weight. Coating with paraffine does not necessarily interfere with the character of the cheese, though it is probable that it must interfere in some way with the normal ferments. Paraffine is wholly indigestible and may produce injurious effects if swallowed with the cheese. (“Farmers’ Bulletins,” Nos. 186-190.)
Fancy Cheeses.
—There is a large number of cheeses made in which cream enters as a prominent part. It is difficult to give these any particular name and the term “fancy cheese” has been applied to this form of cheese as a whole. They are usually put up in small packages or little pots and thus form an article of diet quite distinct from the large press cheese of commerce. In fact they are intended more for condimental purposes and to be eaten in something of the same manner as butter rather than cheese. These cheeses usually are sold for a much higher price and, therefore, can be regarded more as a luxury than as a regular article of diet.
It might be well to mention some of the more particular varieties of these fancy cheeses.
Gruyère.
—Gruyère is a cheese made in Switzerland, where it is much prized and from where it is sent to the various parts of the world. It is a pressed cheese and is rather of a larger size than the fancy cheeses already described, and it is difficult to say whether or not it should find a place among them.
Parmesan.
—Parmesan is a variety of cheese made in Italy. It is about the same size as Gruyère and thus has an intermediate place between the large pressed cheeses of commerce and the fancy cheeses above mentioned.
Gorgonzola
cheese is a very familiar cheese made in Italy and belongs to the same class as the two preceding ones. It is in one sense a fancy cheese and yet is made in such quantities as to belong rather to the commercial variety.
Bacterial Activity in Cheese.
—Modern science has led to the conclusion that the ripening of cheese is due principally to bacterial activity. The changes which take place in the chemical and physical properties of cheese materials, the flavor and aroma which are developed, the production of mould and other growths are marks of the activity of organisms of different character, living and unorganized. Due credit must be given to the enzymic (unorganized) action in these processes and the enzymes are not regarded as living organisms but, on the other hand, as catalytic agents inducing chemical changes similar to those produced in starch by the action of diastase. The peculiar flavors of cheeses which are found in different kinds have been ascribed in late years almost exclusively to the character of bacterial activity. This assumption is perhaps correct, but it must not be forgotten in this connection that the same species of bacteria, in changed environments, does not always produce the same results. The activities of bacteria are peculiarly sensitive to the environment, such as change of temperature, physical conditions of different kinds, locality, and other factors of a complex nature, making up the total conditions in which the organisms live. For this reason the attempts to produce peculiar cheeses which belong in particular localities in other localities have not been gustatorily even if technically successful. It is true that cheeses may be made of the types mentioned, having some of the general characteristics but lacking that indescribable something which after all gives true character. Just as it is impossible to make a Rhine wine in California or a Bordeaux wine in New York so is it impossible to make a Cheddar cheese in Ohio or a Camembert cheese in Connecticut.
Number of Bacteria.
—The number of bacteria, per gram, which appear in cheese varies according to the age of the cheese, conditions under which it is made, temperature, etc. The usual number of bacteria in one gram of cheese varies from five hundred thousand to nearly one hundred million (21st Annual Report of the Wisconsin Agricultural Experiment Station).
Ageing does not seem to increase the number of organisms, since it has been found by some observers that the maximum number present in cheese is found at the time it is taken from the press. It is difficult also to properly sample a cheese for the number of bacteria, since they are unequally distributed in different parts thereof, and the trier, by means of which the sample is secured, may show largely differing numbers in different parts of the same cheese. During the process of curing, especially if the curing be at a high temperature, the number of organisms decreases. At first the decrease is very rapid and then becomes slower as the cheese becomes riper. The decrease in the number of bacteria when the temperature of curing is raised is somewhat contrary to expectations. It has been found that when a cheese is taken from cold storage, say at 24 degrees F., and placed in a temperature of 60 degrees F., the decline in the number of bacteria is always greater than when the cheese is retained at the lower temperature. This may be due to the fact that bacteria which have been developed at a low may lose their vitality at a higher temperature. On the contrary, the development of flavor does not seem to depend upon the number of organisms since the peculiar flavor of cheese is more rapidly developed at the higher temperature, provided it be not too high, although this be attended with a diminution in the number of organisms. Evidently the conditions which favor the metabolic activities of organisms also favor their destruction, since when they have performed their functions they undergo natural disintegration. The character of cheese is such that when it is once formed there is no more opportunity given for a rapid proliferation of the organisms.
It may be found, however, that the development of bacterial life is not the sole or perhaps not the dominant factor in the development of flavors and aromas in cheeses but that this process is due very largely to the enzymic activities obtained from the rennet and which pre-exist in the milk.
Chemical Changes Which Take Place During the Ripening of the Cheese.—Loss of Weight.
—During the process of ripening of cheese there is considerable loss of weight, amounting to from 15 to 20 percent of the total weight of the fresh product. This loss is due chiefly to the evaporation of water, while in the fermentation which takes place volatile bodies are formed which also escape with the water. For instance, any free gas, either carbon dioxid, hydrogen, or nitrogen, which is produced will escape, likewise any alcohol which is formed will at least partially volatilize. There may be also a slight loss due to mechanical attrition, but that is not of any consequence. Owing to the loss of water some of the constituents which may diminish in actual quantity have their percentages proportionately increased. These changes are illustrated by the following analytical data:
| Water. | Protein. | Fat. | Milk Sugar. | Ash. | |
|---|---|---|---|---|---|
| Fresh cheese, | 40.42 | 24.80 | 28 | 1.65 | 5.43 |
| In the dry substance, | .... | 41.62 | 46.99 | .... | .... |
| Same cheese one year old, | 33.12 | 27.35 | 31.70 | 2.96 | 4.87 |
| In the dry substance, | .... | 40.89 | 47.40 | .... | .... |
The quantity of water which is lost in part depends upon the temperature of the store house and the dryness of the air. The loss of water should not be too great, otherwise the cheese would be dry and the ripening process would not go on in a proper manner. In some of the processes which take place during the ripening of cheese water is formed. If, therefore, there is no loss of weight during the process of ripening, the ripened cheese would have more water than the fresh cheese and this would impair the quality of the product. The loss of a certain part of water, namely, from 15 to 20 percent must be regarded as an advantage in the production of cheese.
Changes in the Protein.
—The most important chemical changes, from a digestive point of view, which take place in the cheese are those which the protein undergoes. This protein substance consists chiefly of casein and undergoes profound alteration due to enzymic action during the process of ripening. The casein which when dry naturally forms a leathery, tough material changes into a more soluble and softer product, and during this change there are produced aromas and flavors which add much to the value of the cheese for edible purposes.
The character of the coagulation of the cheese originally has much to do with the general changes which the product undergoes during fermentation. The cheese makers for this reason must pay special attention to the rennet which they employ in the production of the precipitate. One of the most important of the changes which the casein undergoes is that which results in the production of ammonia. This indicates a complete decomposition of the protein substance, at least in part, so that the total amount of protein which is lost as such may reach as high as 25 or 30 percent of that present in the original cheese. There are also produced notable quantities of lucin and other nitrogenous compounds soluble in alcohol. In general it may be said that the changes in the nitrogen constituents of cheese are extremely helpful to digestion. Not only is the protein of ripened cheese more soluble but even the parts which remain unchanged as far as the protein constituent is concerned are so affected by the action of fermentation as to render them more readily subject to the action of the digestive ferments in the alimentary canal. There is a popular superstition that the use of cheese at the end of a meal helps to digest the other food which has given rise to the adage “Cheese, thou mighty elf, digesting all things but thyself.” There is a base of scientific truth in this expression since in ripe cheese the enzymes remain still in an active form and when taken into the stomach must necessarily exercise an influence of considerable magnitude upon the process of digestion. The custom, therefore, which is so universal, of finishing a dinner with a bit of cheese is evidently based upon sound physiological as well as gastronomical principles.
Changes in the Fat.
—The chemical changes which the fat undergoes in the process of ripening the cheese are also of considerable importance. It is claimed by some authors that additional fat is produced from the casein during the process of ripening, which is the cause of the lardy appearance of some cheeses. Many observers have found in ripened cheese a larger percentage of fat than that which was noticed in the fresh cheese. This apparent increase, however, may be due to analytical error, since in the fresh cheese the fat becomes entangled with highly insoluble caseous matter and is difficult of extraction, whereas after the ripening of the cheese and degradation and breaking up of the caseous tissues the fat is much more readily extracted. While it is not impossible that fat should be formed by the fermentation of the casein it does not seem that it is probable.
In examinations which were made of fresh and ripened cheese of the variety known as Roquefort there was found in the dry substance of the fresh cheese 40.80 percent of protein and 53.91 percent of fat. In the same cheese after it was quite old there was found in the dry substance 37.78 percent of protein and 56.14 percent of fat. These data serve to bear out the theory that fat is formed from the protein. On the contrary, it must be remembered that in the fermentation of the protein a number of volatile bodies are formed, especially ammonia, and thus the diminution in the percentage of protein is probably due to the loss of volatile bodies, and the increase in the quantity of fat is therefore a relative one, probably, and not absolute. There is no doubt, however, of the fact that the quantity or character of the fat does change considerably during the process of ripening. There is no reason for supposing that the fat alone of all the contents of cheese escapes enzymic action. It is profoundly changed in its character by the fermentations to which it is subjected, and this change, while it unsuits the fat for butter, may probably make it more palatable and desirable in cheese.
Digestibility of Cheese.
—Reference has already been made to the fact that in the ripening of cheese the protein of the milk, consisting principally of casein, undergoes certain changes which apparently, at least, increase its digestibility. I use the word “apparent” because the flavor and aromas which are produced in the ripening of a cheese act as condimental substances and thus naturally excite the glands which secrete the digestive enzymes to greater activity. Therefore the increased digestibility may be due in part to the increased activity of the digestive ferments as above described rather than to the changes in the casein itself. It must be admitted, however, that these changes during ripening tend to make the casein more granular, softer, and to convert it into compounds more easily acted upon, and are thus favorable to increased digestibility. Experimental studies have shown that in a well ripened American cheese of the Cheddar type 93 percent of the protein present in the cheese and 95 percent of the fat are digested. Artificial digestion experiments have also shown that the pancreas ferments have much more effect upon cheese digestion than the peptic, showing that the cheese is more acted upon in the small intestines, perhaps, than in the stomach. Attention must also be paid to idiosyncrasies in these cases, as there are many people who find it impossible to digest cheese in any form. The eating of larger quantities than are necessary also tends to derange the digestive organs. A well ripened cheese, therefore, should be eaten rather as a condimental substance than as an actual food product, though its value as a food is fully attested. (“Farmers’ Bulletin,” No. 162.)
Effect of Cold Storage on the Curing of Cheese.
—Attention has been called, in the description of different methods of making varieties of cheeses, to the ordinary temperature at which cheeses are cured. In European countries these temperatures are maintained without the use of artificial means. In the United States it is difficult to maintain a very low temperature in summer time without the use of artificial refrigerators. Experimental studies have determined that when the temperature of ripening or storage is reduced to a considerable extent below that usually specified for the standard varieties of cheese the quality of the cheese is superior although the time for storage or ripening is very much prolonged. The artificial curing of cheese has been secured at as low a temperature as 40 degrees. There is also a less loss of weight in cheese cured at this low temperature. A cheese which was cured at 40 degrees when examined by experts scored a mark of 92.4 while the same cheese ripened at 60 degrees scored 95. Another test of a cheese cured at 40 degrees scored 95.7 while the same cheese cured at 50 degrees was marked 94.2 and the cheese cured at 60 degrees 91.7.
Preparations of Casein.
—Properly in connection with cheese preparations may be mentioned those products which are of a food value, procured from casein itself. The precipitated casein is prepared for the market by washing, drying, and grinding to a fine powder, and is then sometimes called protein flour. Sanose is a mixture consisting of about 80 percent of casein and 20 percent of the protein derived from the white of egg. The addition of the white of egg enables the casein to remain in suspension when mixed with water and thus causes the preparation to resemble milk. Casein preparations of this form are practically insoluble in water and, therefore, are not perhaps of the best forms of nitrogenous food for invalids. To avoid this insolubility the casein has been combined with alkalies and the preparations are known as nutrose and eucasein. Plasma is also a preparation of casein with alkalies which are added in sufficient quantities to give 7 percent of ash. These caseinates, as they are sometimes called, that is, combinations of casein with alkalies, are soluble in water and are found to be to a certain extent digestible and nutritive preparations. Casumen and sanatogen are other preparations of casein with alkalies or glycero-phosphate. Wonderful claims are made by manufacturers concerning the digestibility and nutritive properties of these preparations. It is doubtful, however, if they have much greater value, if any, than natural casein in the form of milk or as ripened in cheese. Preparations of this kind usually appeal strongly to those who suffer from digestive disorders and therefore high-sounding names, which are given to practically the same preparations, lead the seeker after health often to try the same substance under a dozen different appellations. These remarks are not made for the purpose of decrying in any way the merits which these preparations may have but only to illustrate a very marked tendency on the part of many people to attribute extreme virtues to ordinary food substances which are sold under attractive and sometimes deceptive names and whose properties and virtues are advertised in an expert manner. Because a food substance consists almost wholly of pure protein is no indication whatever of its exceptionally high food value. Protein is only one form of food and a concentrated ration of protein in any of these forms is just as likely to do harm as good. For emergency rations, for economy in transportation, and for certain diseased conditions of the digestive organs these preparations are undoubtedly valuable, but they have little claim upon the general public in a state of health as staple articles of diet. They are much more nutritive than the extracts of beef and other meats which have obtained a vogue wholly out of proportion to their dietetic or medicinal value. (“Foods and Principles of Dietetics,” by Robert Hutchinson.)
PART V.
CEREAL FOODS.
BARLEY (Genus Hordeum).
In the United States barley is not used to any extent as human food. It has all the nutritive properties of the common cereals and may be considered as a food product, although its chief use is in the making of fermented beverages which will be described in full in the second volume.
Barley is cultivated chiefly in the northern and western portions of the United States and is similar to the oat in this respect, that when the grain is threshed by the ordinary process the first layer of chaff is not separated, and, therefore, it goes into the market unhulled. There are varieties of naked barley which are not much cultivated. The cultivated varieties (Hordeum sativum Pers.) belong practically to one species, although there are very many different varieties grown.
The character of barley best suited to malting will be discussed in the second volume.
Acreage and Yield of Barley.
—The area planted to barley in the United States and other statistical data relating thereto for the year 1906 are as follows:
| Acreage, | 6,323,757 | |
| Yield per acre, | 28.3 | bushels |
| Total production, | 178,916,484 | „ |
| Price per bushel, | 41.5 | cents |
| Value of crop, | 74,235,997 | dollars |
Composition of a Typical Unhulled Barley.
—From a comparative study of a number of samples of American barley the following numbers are regarded as typical of the composition of the unhulled barley grown in the United States:
| Weight of 100 kernels, | 4.53 | grams |
| Moisture, | 10.85 | percent |
| Protein, | 11.00 | „ |
| Ether extract, | 2.25 | „ |
| Crude fiber, | 3.85 | „ |
| Ash, | 2.50 | „ |
| Starch and sugar, etc., | 69.55 | „ |
The important points brought out in the above data are that the percentage of fiber in the unhulled barley is less than one-half that of the unhulled oat, as stated further on, while the percentage of ether extract is only about one-half that of the unhulled oat, and the protein is also decidedly less than in the whole oat.
As has been stated, barley is not very generally used in this country for human food, but is used in this and other countries as an ingredient of soup.
Fig. 22.—Barley Starch. × 200.—(Bureau of Chemistry.)
Protein of Barley.
—The following protein compounds are found in barley in proportionate weight to the total weight of the seed:
| Leucosin, | 0.30 | percent |
| Hordein, | 4.00 | „ |
| Edestin, | 1.95 | „ |
| Proteose, | 1.95 | „ |
| Insoluble protein, | 4.50 | „ |
As seen from the above table the most important of the soluble proteins is hordein, which in quantity is almost equal to the insoluble protein of the barley grain. The starch granules of barley are recognized by their distinctive shape and size, as revealed by the microscope. A typical microphotographic view of barley starch is shown in [Fig. 22].
BUCKWHEAT (Polygonum fagopyrum L.).
Buckwheat
is usually classed with the cereals, but botanically it does not belong to the order of true grasses to which the cereals belong.
Buckwheat is commonly grown in many parts of the United States, and its seed is highly prized for bread and cake making purposes. The buckwheat is ground and the outer black tough hull separated, and the flour is used chiefly for making hot breakfast cakes which are much prized throughout the country. Properly ground buckwheat flour has a more or less dark tint, due to fine particles of the outer envelope which escape the bolting process.
Acreage and Yield of Buckwheat.
—This crop is not grown in many states. New York, Pennsylvania, and Michigan produce the largest quantities. The statistical data for buckwheat grown in the United States in 1906 are as follows:
| Acreage, | 789,208 | |
| Yield per acre, | 18.6 | bushels |
| Production, | 14,641,937 | „ |
| Price per bushel, | 59.6 | cents |
| Total value, | 8,727,443 | dollars |
Composition of Buckwheat Flour.
—The composition of finely bolted buckwheat flour is as follows:
| Moisture, | 11.89 | percent |
| Protein, | 8.75 | „ |
| Ether extract, | 1.58 | „ |
| Ash, | 1.85 | „ |
| Fiber, | .52 | „ |
| Starch and sugar, | 75.41 | „ |
| Calories per gram, | 3,854 |
The above is the composition of a white flour more finely ground and bolted than is advisable for palatable purposes. In the grinding of the above flour the germ which contains a greater part of ether extract is eliminated and also a large quantity of the bodies rich in protein. The composition of a less highly refined flour and one which is more palatable and more nutritious is given in the following data:
| Moisture, | 11.19 | percent |
| Protein, | 9.81 | „ |
| Ether extract, | 2.33 | „ |
| Ash, | 1.53 | „ |
| Fiber, | .73 | „ |
| Starch and sugar, | 74.41 | „ |
| Calories per gram, | 3,954 |
Milling Process.
—In the preparation of the so-called highest grade of buckwheat flour, that is, that which is most carefully ground and thoroughly bolted, the process employed is as follows: During the process of milling the buckwheat grains pass to a receiving separator which removes all the coarse particles, stones, straws, etc., by means of a series of sieves. At the same time any dust which they contain is blown out by a current of air. The sifted grains pass next to the scouring machines, in which they are thoroughly scoured, cleaned, and polished. From these machines the grains pass to a separator containing magnets, by means of which any pieces of metal, in the form of nails, screws, pieces of wire, etc., are removed.
The grains next pass through a steam dryer for removing the greater portion of the water employed for the scouring. As soon as they are dry they are again treated to a blast of air, which removes any dirt, dust, or light particles which may have been detached during the process of drying. The grains next pass to the shelling rolls, where the greater part of the outer hulls is removed. This process is accomplished by means of an apparatus which is called a sieve scalper. After the separation of the outer hulls the residue of the material passes to a drying chamber, where the moisture is reduced to about 10 percent, thus insuring the keeping qualities of the flour. After drying the grains are ready for the rolls. After entering the rolls the process is practically the same as that which is employed in milling wheat, consisting of a series of breaks and reductions, with the attendant bolting and grading, and this process is prolonged until the flour is practically removed from the feed or middlings. The sifting cloths used in the bolting of buckwheat flour are somewhat coarser than those for wheat, and this allows some of the dark particles of the inner hulls to pass into the flour, which gives it a dark color on baking. It is quite possible to make a buckwheat flour as white as that from wheat, but in this country the public taste requires a darker product, so that the white flour does not readily sell. The requisite degree of darkness is secured by using bolting cloths which will allow a part of the inner hulls (middlings) to pass into the flour. Two grades of flour are generally produced—a whiter one in which finer cloths are used, and a darker flour made by using coarser bolting cloths, allowing larger quantities of middlings to pass through. The outer hulls which are first removed are used for fuel, although from their composition it is seen that they contain a large quantity of carbohydrates and might be very profitably used in connection with some highly nitrogenous food, such as cottonseed meal or flaxseed meal for feeding cattle. The middlings are used principally as cattle food, and especially by dairymen.
The above process, while it makes a white and fine-looking flour, is not to be compared with the meal made in the old-fashioned way of grinding between stones and separating the principal part of the outer hull by bolting. This old-fashioned flour is more nutritious, that is, it contains more fat and protein, has a greater fuel value, or in other words has a greater number of calories and makes a much more palatable cake than the fine modern flour.
Buckwheat Cakes.
—Buckwheat cakes are prepared from batter made by mixing buckwheat flour into a paste of the proper consistency, seeding it with yeast, and allowing it to remain in a moderately warm place until fermentation takes place. The proteins of buckwheat have some agglutinating power, and thus, when treated as above, make a cake capable of a considerable degree of aeration. Baking powders are often used as a substitute for yeast and permit of preparation in a few minutes instead of waiting for the fermentation above mentioned. The product made in this way cannot be considered so palatable or nutritious as the old-fashioned product. The batter is baked on a smooth hot iron or soapstone, polished and kept bright in order to prevent the sticking of the cake. The proper polishing of the iron is a better means of preventing sticking than greasing. The batter is poured over the smooth iron and is of a consistency to flatten out without help and to form a film over the baking iron, which produces a cake about one-fourth of an inch in thickness. The cake is to be turned as soon as the side in contact with the iron is brown. It is evident that in this baking process there can be no very profound change in the starch granules, but this does not appear to materially interfere with the digestibility of the product. Buckwheat cakes are eaten hot, usually with butter and sirup. Maple sirup, sorghum sirup, or cane sirup in a pure state are highly prized for use with buckwheat cakes. These sirups are both condimental and nutritious. Mixed sirups made of glucose, melted brown sugar, or molasses, or mixtures of all these bodies are more commonly furnished to the consumer than the pure sirup mentioned above. Honey is also used very extensively as a condimental flavor for cakes of this kind.
Adulterations.
—There is probably no bread or cake making material which is subjected to more extensive adulteration than buckwheat flour. Much of what is sold as buckwheat flour may be regarded as imitations of that substance. Mixtures of rye flour, Indian corn flour, wheat flour, and other ground cereals are used as a substitute for buckwheat. There can be no objection from the hygienic point of view to such substitutes but the use of these mixtures under the name of buckwheat can be regarded in no other light than as an unpardonable fraud.
Detection of Adulterations.
—There is rarely any mineral adulteration practiced with buckwheat flour and if so it is easily detected by incineration. Any content of ash, unless baking powder has been used, above 2 percent may be regarded with suspicion as indicating an admixture of some mineral substance. The cereal flours used for adulteration are readily detected by the microscope in the hands of an experienced observer. The field of the microscope has only to be compared with the microscopic appearance of genuine buckwheat starch in order to detect the added substance.
Buckwheat Starch.
—The microscopic appearance of buckwheat starch is shown in the accompanying [figure]. The granules of buckwheat starch are very characteristic. They consist of chains or groups of more or less angular granules with a well defined nucleus, and without rings or with very faint rings. The contour of buckwheat starch is more angular than that of any other common cereal with exception of maize and rice, and it is this and the relative size which enable the observer to distinguish it from other starches. The size of the granules is quite uniform, varying usually only from 10 to 15 microns[23] in diameter. In so far as the angular appearance is concerned the granules of buckwheat starch have a general resemblance to that of maize and rice and oats, but a comparison under the microscope of the three starches reveals lines of distinction which with a little practice would prevent the observer from drawing a false conclusion.
[23] A micron is one thousandth of a millimeter.
Fig. 23.—Buckwheat Starch. × 200.—(Courtesy of Bureau of Chemistry.)
INDIAN CORN (Zea mays).
Next to wheat the most important cereal used as a human food in the United States is Indian corn. According to the magnitude of the crop, Indian corn is the leading cereal of the country. Statistical data on the production of Indian corn in the United States during 1906 are given in the following table:
| Acreage, | 96,737,581 | |
| Yield per acre, | 30.3 | bushels |
| Production, | 2,927,416,091 | „ |
| Value per bushel, | 39.9 | cents |
| Total value, | 1,166,626,479 | dollars |
Indian corn
is universally employed as food throughout all parts of the country, but more especially in the South, where the daily dietary is rarely complete without one or more meals in which Indian corn is served in some form or other. Although it is grown much more extensively in the North than in the South, it is not so generally used as human food. Indian corn grows in all kinds of soil and produces, under favorable conditions, large yields in all parts of the country. It is the most important agricultural crop of many states, namely, Indiana, Illinois, Iowa, Missouri, and Kansas. It is planted in the late winter and spring in different parts of the country. The planting season varies from January in Florida to June in Maine and Minnesota and the earlier varieties will mature in 120 days.
Maize
is a crop which requires an abundance of rainfall and a high temperature during the growing season. Maize is planted in rows about three and one-half feet apart and in hills of about the same distance apart, or it may be drilled between the rows so that one stalk grows a distance of about from nine inches to a foot from its fellows. It requires constant cultivation during the early period of its growth and a careful preparation of the seed bed. Good farmers give from four to seven cultivations to the growing crop. The field must be kept free of weeds and in good tilth to secure the best results.
Many hundreds of analyses of the maize kernel have been made, but a combination of them all in the following data may be regarded as typical of the Indian corn grown in this country.
| Weight of 100 kernels, | 38 | grams |
| Moisture, | 10.75 | percent |
| Ether extract, | 4.25 | „ |
| Protein, | 10.00 | „ |
| Fiber, | 1.75 | „ |
| Ash, | 1.50 | „ |
| Starch and sugar, etc., | 71.75 | „ |
The consideration of the above data shows that Indian corn is a ration in which the protein is rather low. In other words, the ratio of protein to the carbohydrates and fat is rather large. It is a food product which is particularly well suited to furnish heat and energy and support a high degree of muscular exertion. For this reason it is a food product which is particularly well adapted to men engaged in hard manual labor.
Varieties.
—There are many distinct varieties of Indian corn. Sturtevant has published a description of several hundred. These varieties are classified under various subspecies. The polymorphic species, Zea mays, according to Sturtevant, can be divided into a number of groups which, on account of their well defined and persistent characters, may be considered as presenting specific claims and may properly receive specific nomenclature. The grouping adopted is founded upon the internal structure of the kernel for cultivated varieties, and the presence of a husk to the kernel in the assumed aboriginal form. Hence Sturtevant offers the names Zea tunicata for the husk-kernel forms, Zea everta for the popcorn, Zea indurata for the flint corns, Zea indentata for the dent corns, Zea amylacea for the soft corns, and Zea saccharata for the sweet corns.
Fig. 24.—Section of Raw Popcorn. × 150.—(Courtesy of Bureau of Chemistry.)
Shows cells with the small angular starch grains closely packed together within them.
Argument in favor of the specific claims for these groups is based primarily on the convenience thus attained; secondarily, on the absence or rarity of intermediate or connecting forms, so far as present data extend, and also on the antiquity of the separation. It seems almost certain that in the order of evolution (excluding from consideration the puzzling sweet corn group) progress has been from the pops, through the flints and the dents, to the softs. Certainly the soft corns in some of their varieties present a kernel that is larger, softer, and less fitted to the struggle with natural conditions than is the kernel from any of the other groups. Yet soft corns are the prevailing form in the mummy burials of Peru and of our Southwestern states. The popcorn, on the contrary, has stronger regerminative powers than have the other groups, is better fitted to contend against natural vicissitudes, and is the kind that has been reported as found growing wild in Mexico under the name of Coyote corn, Zea canina Watts.
Some of these subdivisions may not be accepted by botanists, but they are convenient for purposes of description. The principal field varieties which are grown are the flint corn, Zea indurata, and the dent corn, Zea indentata.