§3. THE CLOCK MOVEMENT.
The apparatus for following celestial bodies is divided into two parts; a. The Sliding Plate-holder; and b. The Clepsydra. In addition a short description of the Sun-Camera, c, is necessary.
a. The Sliding Plate-holder.
Mr. De La Rue, who has done so much for celestial photography, was the first to suggest photographing the moon on a sensitive plate, carried by a frame moving in the apparent direction of her path. He never, however, applied an automatic driving mechanism, but was eventually led to use a clock which caused the whole telescope to revolve upon a polar axis, and thus compensate for the rotation of the earth, and on certain occasions for the motion of the moon herself. In this way he has produced the best results that have been obtained in Europe. Lord Rosse, too, employed a similar sliding plate-holder, but provided with clock-work to move it at an appropriate rate. I have not been able as yet to procure any precise account of either of these instruments.
The first photographic representations of the moon ever made, were taken by my father, Professor John W. Draper, and a notice of them published in his quarto work “On the Forces that Organize Plants,” and also in the September number, 1840, of the London, Edinburgh, and Dublin Philosophical Magazine. He presented the specimens to the New York Lyceum of Natural History. The Secretary of that Association has sent me the following extract from their minutes:—
“March 23d, 1840. Dr. Draper announced that he had succeeded in getting a representation of the moon’s surface by the Daguerreotype.... The time occupied was 20 minutes, and the size of the figure about 1 inch in diameter. Daguerre had attempted the same thing, but did not succeed. This is the first time that anything like a distinct representation of the moon’s surface has been obtained.
“Robt. H. Brownne, Secretary.”
As my father was at that time however much occupied with experiments on the Chemical Action of Light, the Influence of Light on the Decomposition of Carbonic Acid by Plants, the Fixed Lines of the Spectrum, Spectrum Analysis, &c., the results of which are to be found scattered through the Philosophical Magazine, Silliman’s Journal, and the Journal of the Franklin Institute, he never pursued this very promising subject. Some of the pictures were taken with a three inch, and some with a five inch lens, driven by a heliostat.
In 1850, Mr. Bond, taking advantage of the refractor of 15 inches aperture at Cambridge, obtained some fine pictures of the moon, and subsequently of double stars, more particularly Mizar in Ursa Major. The driving power, in this instance, was also applied to move the telescope upon a polar axis.
Besides these, several English and continental observers, Messrs. Hartnup, Phillips, Crookes, Father Secchi, and others, have worked at this branch of astronomy, and, since 1857, Mr. Lewis M. Rutherfurd, of New York, has taken many exquisite lunar photographs, which compare favorably with foreign ones.
But in none of these instances has the use of the sliding plate-holder been persisted in, and its advantages brought into view. In the first place it gets rid completely of the difficulties arising from the moon’s motion in declination, and in the second, instead of injuring the photograph by the tremors produced in moving the whole heavy mass of a telescope weighing a ton or more, it only necessitates the driving of an arrangement weighing scarcely an ounce.
My first trials were with a frame to contain the sensitive plate, held only at three points. Two of these were at the ends of screws to be turned by the hands, and the third was on a spring so as to maintain firm contact. This apparatus worked well in many respects, but it was found that however much care might be taken, the hands always caused some tremor in the instrument. It was evident then that the difficulty from friction which besets the movements of all such delicate machinery, and causes jerking and starts, would have to be avoided in some other way.
I next constructed a metal slide to run between two parallel strips, and ground it into position with the greatest care. This, when set in the direction of the moon’s apparent path, and moved by one screw, worked better than the preceding. But it was soon perceived that although the strips fitted the frame as tightly as practicable, an adhesion of the slide took place first to one strip and then to the other, and a sort of undulatory or vermicular progression resulted. The amount of deviation from a rectilinear motion, though small, was enough to injure the photographs. At this stage of the investigation the regiment of volunteers to which I belonged was called into active service, and I spent several months in Virginia.
Fig. 32.
Sliding Plate-holder.
My brother, Mr. Daniel Draper, to whose mechanical ingenuity I have on several occasions been indebted for assistance in the manifold difficulties that have arisen while constructing this telescope, continued these experiments at intervals. He presented me on my return with a slide and sand-clock, with which some excellent photographs have been taken. He had found that unless the slide above mentioned was made ungovernably long, the same trouble continued. He then ceased catching the sliding frame h, Fig. 32, by two opposite sides, and made it run along a single steel rod a, being attached by means of two perforated plates of brass b, b′. The cord i going to the sand-clock, was applied so as to pull as nearly as possible in the direction of the rod. A piece of cork c, gave the whole steadiness, and yet softness of motion. The lower end of the frame was prevented from swinging back and forward by a steel pin d, which played along the glass rod e. All these parts were attached to a frame k, fitting on the eyepiece holder, and permitting the rod a to change from the horizontal position in which it is here drawn, to any angular one desired. The thumb-screw f retained it in place; g and g′ are pulleys which permit the cord to change direction.
Subsequently, a better method of examining the uniformity of the rate, than by noticing the sharpness of the photograph produced, was invented. It consists in arranging a fixed microscope, magnifying about 40 times, at the back of the ground glass plate, which fits in the same slide as the sensitive plate. By watching the granulated appearance pass before the eye, as the slide is moved by the clock, the slightest variation from uniformity, any pulsatile or jerking movement is rendered visible. By the aid of this microscopic exaggeration, it was seen that occasionally, when there had been considerable changes in temperature, the steadiness of the motion varied. This was traced to the irregular slipping of b, b′.
Fig. 33.
Frictionless Slide (front view). Sectional view.
A different arrangement was then adopted, by which a lunar crater can be kept bisected as long as is necessary, and which gives origin to no irregularities, but pursues a steady course. The principle is, not to allow a slipping friction anywhere, but to substitute rolling friction, upon wheels turning on points at the ends of their axles. The following wood-cut is half the real size of this arrangement.
A glass rod a, a′, Fig. 33, is sustained by two wheels b, b′, and kept in contact, with them by a third friction roller c, pressed downward by a spring. This rod carries a circular frame d, d′, upon which at e, e′, e″, are three glass holders and platinum catches. A spring f holds the sensitive plate in position, by pressing against its back. The circular frame d is kept in one plane by a fourth friction roller g, which runs on a glass rod h, and is kept against it by the inward pressure of the overhanging frame d. The cord i is attached to the arm k, and pulls in the direction of the glass rod a. From m to a fixed point near b, a strip of elastic India-rubber is stretched, to keep the cord tight. The ring of brass n, n′ carries the whole, serving as a basis for the stationary parts, and in its turn being fastened to the eyepiece holder, so as to allow the glass rod a to change direction, and be brought into coincidence with the apparent path of the moon. At o is a thumb-screw or clamp. Through the ring n, n′, a groove p is cut, into which a piece of yellow glass may be placed, when the actinic rays are to be shut off from the plate.
Since this contrivance has been completed, all the previous difficulties have vanished. The moving of a plate can be accomplished with such precision, that when the atmosphere was steady, negatives were taken which have been enlarged to three feet in diameter.
The length of time that such a slide can be made to run is indefinite, depending in my case on the size of the diagonal flat mirror, and aperture of the eyepiece holder. I can follow the moon for nearly four minutes, but have never required to do so for more than fifty seconds. At the mouth of the instrument, where no secondary mirror is necessary, the time of running could be increased.
The setting of the frictionless slide in angular position is accomplished as follows: A ground glass plate is put into it, with the ground face toward the mirror. Upon this face a black line must have been traced, precisely parallel to the rod a. This may be accomplished by firmly fixing a pencil point against the ground side, and then drawing the frame d and glass past it, while the rest of the slide is held fast. As the moon passes across the field, the position of the apparatus must be changed, until one of the craters runs along the line from end to end. A cross line drawn perpendicular to the other, serves to adjust the rate of the clepsydra as we shall see, and when a crater is kept steadily on the intersection for twice or three times the time demanded to secure an impression, the adjustment may be regarded as complete.
It is necessary of course to expose the sensitive plate soon after, or the apparent path of the moon will have changed direction, unless indeed the slide is set to suit a future moment.
b. The Clepsydra.
My prime mover was a weight supported by a column of sand, which, when the sand was allowed to run out through a variable orifice below, could be made to descend with any desired velocity and yet with uniformity. In addition, by these means an unlimited power could be brought to bear, depending on the size of the weight. Previously it was proposed to use water, and compensate for the decrease in flow, as the column shortened, by a conical vessel; but it was soon perceived that as each drop of water escaped from the funnel-shaped vessel, only a corresponding weight would be brought into play. This is not the case with sand, for in this instance every grain that passes out causes the whole weight that is supported by the column to come into action. In the former instance a movement consisting of a series of periods of rest and periods of motion occurs, because power has to accumulate by floating weight lagging behind the descending water, and then suddenly overtaking it. In the latter case, on the contrary, there is a regular descent, all minor resistances in the slide being overcome by the steady application of the whole mass of the weight.
When these advantages in the flow of sand were ascertained, all the other prime movers were abandoned. Mercury-clocks, on the principle of the hydrostatic paradox, air-clocks, &c., in great variety, had been constructed.
Fig. 34.
The Sand-Clock.
The sand-clock consisted of a tube a (Fig. 34), eighteen inches long and one and a half in diameter, nearly filled with sand that had been raised to a bright red heat and sifted. Upon the top of the sand a leaden weight b was placed. At the bottom of the tube a peculiar stopcock, seen at (2) enlarged, regulated the flow, the amount passing depending on the size of the aperture d. This stopcock consisted of two thin plates, fixed at one end and free at the other. The one marked e is the adjusting lever, and its aperture moves past that in the plate g. The lever f serves to turn the sand off altogether, without disturbing the size of the other aperture, which, once set to the moon’s rate, varies but slightly in short times. A movable cover h, perforated to allow the cord i to pass through, closed the top, while the vessel k retained the escaped sand, which at suitable times was returned into the tube a, the weight b being temporarily lifted out. From the clock the cord i communicated motion to the frictionless slide, as shown in Fig. [33]. This cord should be as inelastic as possible, consistent with pliability, and well waxed.
One who has not investigated the matter would naturally suppose that the flow of sand in such a long tube would be much quicker when the tube was full than when nearly empty, and that certainly that result would occur when a heavy weight was put on the shifting mass. But in neither case have I been able to detect the slightest variation, for, although by shaking the tube a diminution of the space occupied by the sand may be caused, yet no increase of weight tried could accomplish the same reduction. These peculiarities seem to result from the sand arching as it were across the vessel, like shot in a narrow tube, and only yielding when the under supports are removed. In blasting, a heavy charge of gunpowder can be retained at the bottom of a hole, and made to split large masses of rock, by filling the rest of the hole with dry sand.
I believe that no prime mover is more suitable than a sand-clock for purposes where steady motion and a large amount of power are demanded. The simplicity, for instance, of a heliostat on this plan, the large size it might assume, and its small cost, would be great recommendations. In these respects its advantages over wheelwork are very apparent. The precision with which such a sand-clock goes may be appreciated when it is stated, that under a power of 300 a lunar crater can be kept bisected for many times the period required to photograph it. To secure the greatest accuracy in the rate of a sand-clock, some precautions must be taken. The tube should be free from dents, of uniform diameter, and very smooth or polished inside. Water must not be permitted to find access to the sand, and hygrometric varieties of that substance should be avoided, or their salts washed out. The sand should be burned to destroy organic matter, and so sifted as to retain grains nearly equal in size. The weight, which may be of lead, must be turned so as to go easily down the tube, and must be covered with writing paper or some other hard and smooth material, to avoid the proneness to adhesion of sand. A long bottle filled with mercury answers well as a substitute.
I have used in such clocks certain metallic preparations: Fine shot, on account of its equality of size, might do for a very large clock with a considerable opening below, but is unsuitable for a tube of the size stated above. There is, however, a method by which lead can be reduced to a divided condition, like fine gunpowder, when it may replace the sand. If that metal is melted with a little antimony, and while cooling is shaken in a box containing some plumbago, it breaks up at the instant of solidifying into a fine powder, which is about five times as heavy as sand. If after being sifted to select the grains of proper size, it is allowed to run through a small hole, the flow is seen to be entirely different from that of sand, looking as if a wire or solid rod were descending, and not an aggregation of particles. It is probable, therefore, that it would do better than sand for this purpose. I have not, however, given it a fair trial, because just at the time when the experiments with the sand-clock had reached this point, I determined to try a clepsydra as a prime mover.
The reason which led to this change was that it was observed on a certain occasion when the atmosphere was steady, that the photographs did not correspond in sharpness, being in fact no better than on other nights when there was a considerable flickering motion in the air. A further investigation showed that in these columns of sand there is apt to be a minute vibrating movement. At the plate-holder above this is converted into a series of arrests and advances. On some occasions, however, these slight deviations from continuous motion are entirely absent, and generally, indeed, they cannot be seen, if the parts of the image seem to vibrate on account of currents in the air. By the aid of the microscopic exaggeration described on a former page—which was subsequently put in practice—they may be observed easily, if present.
When the negative produced at the focus of the great mirror is intended to be enlarged to two feet or more in size, these movements injure it sensibly. A variety of expedients was resorted to in order to avoid them, but none proved on all occasions successful.
It is obvious that in a water-clock, where the mobility of the fluid is so much greater than that of solid grains, this difficulty would not arise. The following contrivance in which the fault of the ordinary clepsydra, in varying rate of flow as the column shortens, is avoided, was next made. With it the best results are attainable, and it seems to be practically perfect.
Fig. 35.
The Clepsydra.
It consists of a cylinder a, in which a piston b moves watertight. At the top of the piston rod is a leaden five-pound weight c, from which the cord i goes to the sliding plateholder g. The lower end of the cylinder terminates in a stopcock d, the handle of which carries a strong index rod e, moving on a divided arc. At f a tube with a stopcock is attached. Below, a vessel h receives the waste fluid.
In using the clepsydra the stopcock of f is opened, and the piston being pulled upwards, the cylinder fills with water from h. The stopcock is then closed, and if d also is shut, the weight will remain motionless. The string i is next connected with the slide, and the telescope turned on the moon. As soon as the slide is adjusted in angular position (page [36]) the stopcock d is opened, until the weight c moves downwards, at a rate that matches the moon’s apparent motion.
In order to facilitate the rating of the clepsydra, the index rod e is pressed by a spring k (2), against an excentric l. As the excentric is turned round, the stopcock d is of course opened, with great precision and delicacy. The plug of this stopcock (3) is not perforated by a round hole, but has a slit. This causes equal movements in the rod e, to produce equal changes in the flow. The rating requires consequently only a few moments.
The object of the side tube f is to avoid disturbing d when it becomes necessary to refill the cylinder, for when it is once opened to the right degree, it hardly requires to be touched again during a night’s work. In order to arrest the downward motion of the piston at any point, a clamp screws on the piston rod, and can be brought into contact with the cylinder head, as in the figure.
That this instrument should operate in the best manner, it is essential to have the interior of the brass cylinder polished from end to end, and of uniform diameter. If any irregularity should be perceived in the rate of going, it can be cured completely by taking out the piston, impregnating its leather stuffing with fine rotten stone and oil, and then rubbing it up and down for five minutes in the cylinder, so as to restore the polish. The piston and cylinder must of course be wiped, and regreased with a mixture of beeswax and olive oil (equal parts) after such an operation. In replacing the piston, the cylinder must be first filled with water, to avoid the presence of air, which would act as a spring.
Although it may be objected that this contrivance seems to be very troublesome to use, yet that is not the case in practice. Even if it were, it so far surpasses any prime mover that I have seen, where the utmost accuracy is needed, that it would be well worth employing.
c. The Sun Camera.
In taking photographs of the sun with the full aperture of this telescope, no driving mechanism is necessary. On the contrary, the difficulty is rather to arrange the apparatus so that an exposure short enough may be given to the sensitive plate, and solarization of the picture avoided. It is not desirable to reduce the aperture, for then the separating power is lessened. The time required to obtain a negative is a very small fraction of a second, for the wavy appearance produced by atmospheric disturbance is not unfrequently observed sharply defined in the photograph, though these aerial motions are so rapid that they can scarcely be counted. Some kind of shutter that can admit and cut off the solar image with great quickness is therefore necessary.
Fig. 36.
The Spring Shutter.
In front of an ordinary camera a, Fig. 36, attached to the eyepiece holder of the telescope, and from which the lenses have been removed, a spring shutter is fixed. It consists of a quadrant of thin wood b, fastened by its right angle to one corner of the camera. Over the hole in this quadrant a plate of tin d can be adjusted, and held in position by a screw moving in a slot so as to reduce the hole if desired to a mere slit. It may vary from 1 1/2 inch to less than 1/50 of an inch. The quadrant is drawn downwards by an India-rubber spring g, 1 inch wide, 1/8 of an inch thick, and 8 inches long. This spring is stretched when in action to about 12 inches, and when released draws the slit past the aperture c in the camera. Two nicks in the edge of the quadrant serve with the assistance of a pin e, which can easily be drawn out by a lever (not shown in the cut), to confine the slit either opposite to or above c. A catch at f prevents the shutter recoiling. The sensitive plate is put inside the box as usual in a plate-holder. When a photograph is taken, the spring shutter is drawn up so that the lower nick in the edge of the quadrant is entered by the pin e, and the inside of the camera obscured. The front slide of the plateholder is then removed in the usual manner, and the solar image being brought into proper position by the aid of the telescope finder, the trigger retaining e is touched, the shutter flies past c, and the sensitive plate may then be removed to be developed.
To avoid the very short exposure needed when a silvered mirror of 188 square inches of surface is used, I have taken many solar photographs with an unsilvered mirror, which only reflects according to Bouguer 2 1/2 per cent. of the light falling upon it, and should permit an exposure 37 times as long as the silvered mirror. This is the first time that a plain glass mirror has been used for such a purpose, although Sir John Herschel suggested it for observation many years ago. But eventually this application of the unsilvered mirror had to be abandoned. It has, it is true, the advantage of reducing the light and heat, but I found that the moment the glass was exposed to the Sun, it commenced to change in figure, and alter in focal length. This latter difficulty, which sometimes amounts to half an inch, renders it well nigh impossible to find the focal plane, and retain it while taking out the ground glass, and putting in the sensitive plate. If the glass were supported by a ring around the edge, and the back left more freely exposed to the air, the difficulty would be lessened but not avoided, for a glass mirror can be raised to 120° F. on a hot day by putting it in the sunshine, though only resting on a few points. Other means of reducing the light and heat, depending on the same principle, can however be used. By replacing the silvered diagonal mirror with a black glass or plain unsilvered surface, as suggested by Nasmyth, the trouble sensibly disappears.
I have in this way secured not only maculæ and their penumbræ, but also have obtained faculæ almost invisible to observation. On some occasions, too, the precipitate-like or minute flocculent appearance on the Sun’s disk was perceptible.
It seems, however, that the best means of acquiring fine results with solar photography, would be to use the telescope as a Cassegrainian, and produce an image so much enlarged, that the exposure would not have to be conducted with such rapidity. Magnifying the image by an eyepiece would in a general way have the same result, but in that case the photographic advantages of the reflector would be lost, and it would be no better than an achromatic.