§4. THE OBSERVATORY.

This section is divided into a, The Building; b, The Dome; and c, The Observer’s Chair.

a. The Building.

The Observatory is on the top of a hill, 225 feet above low water mark, and is in Latitude 40° 59′ 25″ north, and Longitude 73° 52′ 25″ west from Greenwich, according to the determinations of the Coast Survey. It is near the village of Hastings-upon-Hudson, and is about 20 miles north of the city of New York. The surrounding country on the banks of the North River is occupied by country seats, on the slopes and summits of ridges of low hills, and no offensive manufactories vitiate the atmosphere with smoke. Our grounds are sufficiently extensive to exclude the near passages of vehicles, and to avoid tremor and other annoyances.

Fig. 37.

Dr. Draper’s Observatory.

An uninterrupted horizon is commanded in every direction, except where trees near the dwelling house cut off a few degrees toward the southwest. The advantages of the location are very great, and often when the valleys round are filled with foggy exhalations, there is a clear sky over the Observatory, the mist flowing down like a great stream, and losing itself in the chasm through which the Hudson here passes.

The foundation and lower story of the building are excavated out of the solid granite, which appears at the edge of the hill. This arrangement was intended to keep the lower story cool, and avoid, in the case of the metal reflector, sudden changes of temperature. The eastern side of the lower story, however, projects over the brow of the hill, and is therefore freely exposed to the air, furnishing, when desired, both access and thorough ventilation through the door. The second story or superstructure is of wood, lined inside with boards like the story below. They serve to inclose in both cases a non-conducting sheet of air.

The inside dimensions of both stories taken together are 17 1/2 feet square, and 22 feet high, to the apex of the dome. This space is unnecessarily large for the telescope, which only requires a cylinder 13 feet in diameter and 13 feet high. A general idea of the internal arrangement is gained from Fig. [28]. In Fig. 38, a a′ is the floor of the gallery, b b′ b″ the circular aperture in which the telescope c c′ turns. The staircase is indicated by d. The Enlarger, §6, rests on the shelf e, the heliostat being outside at f. The door going into the photographic room is at g, h h′ are tables, i the water tank, k the tap and sink, l the stove, m a heliostat shelf, n the door, o the window.

Fig. 38.

Plan of Observatory (upper floor).

The building is kept ventilated by opening the door in the lower part, and the dome shutter, seen in Fig. [37], for some time before using the instrument. On a summer day the upper parts, and especially those close under the dome, become without this precaution very hot, and this occurred even before the tin roof was painted. Bright tinplate seems not to be able to reflect by any means all the heat that falls upon it, but will become so warm in July that rosin will melt on it, and insects which have lighted in a few moments dry up, and soon become pulverizable. A knowledge of these facts led to the abandonment of wooden sheathing under the tin, for without it when night comes on the accumulated heat radiates away rapidly, and ceases to cause aerial currents near the telescope.

The interior of the building is painted and wainscoted, and the roof is ornamented partly in blue and oak, and partly with panels of tulip-tree wood.

There are only two windows, and they are near the southern angles of the roof. While they admit sunshine on some occasions, they can on others be closed, and the interior be reduced to darkness. In the southeast corner a small opening e may allow a solar beam three inches in diameter to come in from a heliostat outside. The greatest facilities are thus presented for optical and photographical experiments, for in the latter case the whole room can be used as a camera obscura.

b. The Dome.

The roof of the observatory is 20 feet square. The angles are filled in solid, and a circular space 15 feet in diameter is left to be covered by the revolving dome. Although such a construction is architecturally weak and liable to lose its level, yet the great advantages of having the building below square, and the usefulness of the corners, determined its adoption, the disadvantages being overcome by a very light dome.

The dome is 16 feet in outside diameter, and rises to a height of 5 feet above its base. It is, therefore, much flatter than usual, in fact, might have been absolutely flat, with this method of mounting. It would then have been liable, however, to be crushed in by the deep winter snows.

Fig. 39.

Joints in Tin of Dome.

It consists of 32 ribs, arcs of a circle, uniting at a common centre above. Each one is formed of two pieces of thin whitewood, b, Fig. 39, fastened side by side, with the best arrangements of the grain for strength. They are three inches wide and one inch thick at the lower end, and taper gradually to 2 1/2 by 1.

Over these ribs tinplate is laid in triangular strips or gores, about 18 inches wide at the base, and 10 feet long. Where the adjacent triangles of tin a a′ meet, they are not soldered, but are bent together. This allows a certain amount of contraction and expansion, and is water-proof. It strengthens the roof so much, that if the ribs below were taken away, this corrugated though thin dome would probably sustain itself. The tin is fastened to the dome ribs b by extra pieces c inserted in the joint and doubled with the other parts, while below they are nailed to the ribs. In the figure the tin is represented very much thicker than it is in reality.

This dome, although it has 250 square feet of surface, only weighs 250 pounds. That at the Cambridge (Massachusetts) Observatory, 29 1/2 feet in diameter, weighs 28,000 pounds.

The slit or opening is much shorter than usual, only extending half way from the base towards the summit. It is in reality an inclined window, 2 1/2 feet wide at the bottom, 1 1/2 wide at the top, and 4 feet long. It is closed by a single shutter, as seen in Fig. [37], and this when opened is sustained in position by an iron rod furnished with a hinge at one end and a hook at the other.

Fig. 40.

The Dome Arch.

The principal peculiarity of the dome, the means by which it is rotated, remains to be described. Usually in such structures rollers or cannon balls are placed at intervals under the edge, and by means of rack work, a motion of revolution is slowly accomplished. Here, on the contrary, the whole dome b b′ b″ (Fig. 40) is supported on an arch h h′ h″, carrying an axis a at its centre, around which a slight direct force, a pull with a single finger, will cause movement, and by a sudden push even a quarter of an entire revolution may be accomplished. It is desirable, however, to let it rest on the edge b b″, when not in use. At c there is an iron catch on the arch, by which the lever e, that raises the dome, is held down. The fulcrum is at d. The lever is hinged near c, so that when by being depressed it should have come in the way of the telescope below, the lower half g can be pushed up, the part from c toward d still holding the dome supported.

The arch can be set across the observatory in any direction, north and south, east and west, or at any intermediate position, because the abutments where the ends rest, are formed by a ring l l′ l″, fastened round the circular aperture, through the stationary part of the roof.

Fig. 41.

A Dome Clamp.

When the telescope is not in use, and the dome is let down, so that there is no longer an interval of a quarter of an inch between it and the rest of the roof, it is confined inside by four clamps and wedges. Otherwise, owing to its lightness, it would be liable to be blown away. These clamps a, Fig. 41, are three sides of a square, made of iron one inch square. They catch above by a point in the wooden basis-circle of the dome b, and below are tightened by the wedge c.

When the dome is raised it is prevented from moving laterally and sliding off by three rollers, one of which is seen at f, Fig. [40]. These catch against its inner edge, and only allow slight play. At first it was thought necessary to have a subsidiary half arch at right angles to the other to hold it up, but that is now removed.

All the parts work very satisfactorily, and owing to the care taken to get the roof-circle and basis-circle flat and level, no leakage takes place at the joint, and even snow driven by high winds is unable to enter.

c. The Observer’s Chair.

Fig. 42.

The Observer’s Chair.

This is not a chair in the common acceptation of the word, but is rather a movable platform three feet square, capable of carrying two or more persons round the observatory, and maintaining them in an invariable position with regard to the telescope eyepiece.

Its general arrangement is better comprehended from the sketch, Fig. 42, than from a labored description. Below, it runs on a pair of wheels a (one only is visible) 9 inches in diameter, whose axles point to the centre of the circle upon which they run. They are prevented from shifting outwards by a wooden railroad b, b′, and inwards by the paling l, l′. Above, the chair moves on a pair of small rollers c, which press against a circular strip or track d, d′, nailed around the lower edge of the dome opening. Access to the platform is gained by the steps e, e′. Attached to the railing of this platform, and near it on the telescope, are two tables (not shown in the figure) for eyepieces, the sliding plateholder, &c.