FROM MINE TO FURNACE

In most industries, particularly where the percentage of waste products is large, it is found advantageous and economical to establish factories as near the source of supply of raw material as possible. But the iron ore mined in the Lake Superior region is transported something like a thousand miles before being delivered to the factories. The question naturally arises, Why is not the ore turned into pig iron or steel ingots at once as near the mouths of the mines as possible, and sent in this condensed form to the factories, thus saving more than half the cost of transportation? The answer is simple: the coal mines and steel factories lie in the East, one established by nature, the other by man many years before iron ore was found in the Lake region. And it is found just as cheap and easy to transport the iron to the coal regions as it would be to transport the coal to the ore regions. Furthermore, the factories in the neighborhood of Pittsburg and along the southern shores of Lake Erie and Lake Ontario are near the great centres of civilization, and are accessible the year round; while the Lake Superior region is "frozen in" for at least three months in the year.

And so, in place of a great traffic of coal westward to the Lake Superior regions, there is a great eastward traffic of ore, by rail and water, passing from the mines to furnaces and factories a thousand miles away. Indeed, this is probably the greatest and most remarkable system of transportation in the world. Specially constructed trains, wharves, boats, and machinery, used for this single purpose, and not duplicated either in design or extent, make this stupendous enterprise a unique, as well as a purely American one.

The transportation begins with the train loads of ore that run from the mines to the lake shore and out upon the wharves built to receive them. These wharves are enormous structures, sometimes half a mile in length, built up to about the height of the masts of ore boats. On the sides and in the centres of these towering structures are huge bins for holding the ore, these bins communicating directly with the holds of the ore steamers tied up alongside. Four tracks are frequently laid on the top of the wharves, and are so arranged that trains four abreast can dump the ore into the bins, or waiting ships, at the same time. If the bins are empty and boats waiting to receive a cargo, the ore is discharged by long chutes into the holds from the cars. Otherwise the bins are filled, the trains returning to the mines as quickly as possible for fresh loads.

The boats for receiving this cargo are of special design, many of them differing very greatly in appearance from ordinary ocean liners of corresponding size. This is particularly true of the "whale-backs" which have little in common in appearance with ordinary steamers except in the matter of funnels; and even these are misplaced sternwards to a distance quite out of drawing with the length of the hull. Their shape is that of the ordinary type of submarine boat—that is, cigar-shaped—this effect being obtained by a curved deck completely covering the place ordinarily occupied by a flat deck. A wheel-house, like a battle-ship's conning-tower, is placed well forward, supported on steel beams some distance above the curved deck for observation purposes; and engines, boilers, and coal bunkers occupy a small space in the stern. The boat, therefore, is mostly hold.

But the "whale-backs" form only a small portion of the ore-fleet. The ordinary type of boat conforms more nearly to the shape of ocean boats, except that the bridge, wheel-house, and engines are located as in the whale-backs. The bows of these boats are blunt, the desideratum in such craft being hull-capacity rather than speed. For sea-worthiness they are equal to any ocean boats, as the battering waves of Lake Superior are quite as powerful and even more treacherous than those of the Atlantic or Pacific. Some of these boats are five hundred feet long, equal to all but the largest ocean vessels. Their coal-carrying capacity is relatively small, since coaling stations are numerous at various points on the journey, and every available inch of space is utilized for the precious iron ore.

In order to facilitate loading, the decks are literally honey-combed with hatches, some boats having fifteen or sixteen openings extending the width of the deck. By this arrangement the time of loading is reduced to a matter of a few hours, as a dozen chutes, each discharging several tons of ore per minute, soon fill the yawning compartments with the necessary six, eight, or nine thousand tons, that make up the cargo.

Quite recently lake-navigators have learned, what rivermen have long known, that cheap transportation may be effected on a large scale by barges and towing. Before the outbreak of the Civil War forty years ago, the Mississippi river swarmed with great cargo-carrying steamers, employing armies of men and consuming enormous quantities of fuel. But after the war the experiment was tried of hauling the cargoes on barges towed by tug boats, and this proved to be so much cheaper that the fleet of great river boats soon disappeared. In somewhat the same way the barge has come into use of late years in the ore-traffic, and the great ore-steamers now tow behind them one or two barges equal in carrying capacity to themselves. In this way three ships' cargoes of ore are transported a thousand miles by a score of men, a dozen on the steamer and three or four on each of the barges. The barges themselves are rigged as ships, and if necessary can shift for themselves by means of sails attached to their stubby masts. But these are used only on special and unusual occasions, as in case of accidental parting of the hawsers during a storm.

The problem of loading the ships at the ore wharves is a simple one as compared with the equally important one of transferring the ore from the hold to trains of cars in waiting at the eastern end of the water route. For four handlings of the ore are necessary before it is finally deposited in the furnaces in the east. The first of these is from the mine to cars; the second from the cars to the boats; the third from the boats to cars; and the fourth from the cars to the blast furnaces.

For many years about the only hand work done in any of these processes was that of transferring from the boats to the ore-trains, and even here "automatic unloaders" are now rapidly supplanting the tedious hand method. By the older methods a travelling crane, or swinging derrick, dropped a bucket into the hold of the ore-vessel, where workmen shovelled it full of the red ore. It was then lifted out by machinery and the contents dumped into cars in much the same manner as that of the steam shovel in the mines. Recently, however, a machine has been perfected which scoops up the ore from the ship's hold and transfers it to the cars without the aid of shovellers. The only human aid given this gigantic machine is to guide it by means of controlling levers—to furnish brains for it, in short—the "muscle" being furnished by steam power. The great arm of this automatic unloader, resembling the sweep of the old-fashioned well in principle, moves up and down, burying the jaws of the shovel into the ore in the hold, and pulling them out again filled with ore, with monotonous regularity, quickly emptying the vessel under the guidance of half a dozen men, and performing the labor of hundreds.

Thus the last field of activity for the laborer and his shovel, in the iron-ore industry, has been usurped by mechanical devices. From the time the ore is taken from the mine until it appears as molten metal from the furnaces, it is not touched except by mechanisms driven by steam, compressed air, or electricity. And yet, so rapid is the growth of the iron and steel industry that there is almost always a demand for more workmen.

For this reason, and perhaps because of the "American spirit" among workmen, innovations in the way of labor-saving machinery are not resisted among the mine laborers. The American workman seldom resists or attacks machinery on the ground that it "throws him out of a job," as does his English cousin. It would be unjust to attribute this attitude to superior acumen on the part of the American workman, and it is probably a difference in conditions and surroundings that accounts for the diametrically opposite views held by laborers on the two sides of the Atlantic. But after all, results must speak for themselves, and the advantage all lies in favor of the progressive attitude of the western laborer, if we may judge by the relative social status and financial standing of European and American workmen.