PERFECTING THE DYNAMO
The first separately excited dynamos were constructed by Dr. Henry Wilde, F.R.S., between 1863 and 1865, and this invention paved the way for rapid progress. In 1866-7 Varley, Siemens, Wheatstone, and Ladd constructed machines with several iron electromagnets, self-excited, which were described as dynamo-electric machines, a term afterward contracted to dynamos. In 1867 Dr. Wilde improved the armature by introducing several coils arranged around a cylinder; the current from a few of the coils was rectified and used to excite the field magnet, while the main current as given off by the rest of the coils was taken off by ring-contacts, the machine being a self-exciting, alternating-current dynamo.
WILDE'S SEPARATELY EXCITED DYNAMO.
Dr. Wilde invented and patented (1863-5) the first separately excited dynamo, with which he demonstrated that the feeble current from a small magneto-electric machine would, by the expenditure of mechanical power, produce currents of great strength from a large dynamo.
The Italian, Picnotti, in 1864 invented a ring armature which, although provided with teeth was wound with coils in such a way as to obtain a very uniform current; but the practical introduction of the continuous-current machines dates from 1870, when Gramme re-invented the ring and gave it the form which is still in vogue. Von Alteneck in 1873 converted the Siemens shuttle armature along the same lines and so introduced the drum arrangement which has since been very extensively adopted.
Thus through the efforts of a great number of workers the idea of utilizing electromagnetic energy for the purposes of the practical worker came to be a reality. Numberless machines have been made differing only as to details that need not detain us here. Everyone is familiar with sundry applications of the dynamo to the purposes of to-day's applied science. It must be understood, of course, that the amount of electricity generated in any dynamo is precisely measurable, and that by no possibility could the energy thus developed exceed the energy required to move the coils of wire. Were it otherwise the great law of the conservation of energy would be overthrown. In actual practice, of course, there is loss of energy in the transaction. The current of electricity that flows from the very best dynamo represents considerably less working power than is expended by the steam engine in forcibly revolving the armature. In the early days of experiments the loss was so great as to be commercially prohibitive. With the perfected modern dynamo the loss is not greater than fifteen per cent; but even this, it will be noted, makes electricity a relatively expensive power as compared with steam,—except, indeed, where some natural power, like the Falls of Niagara, can be utilized to drive the armature.