Fluorspar
In the southeastern tip of Illinois lie deposits of a mineral that contains the chemical element fluorine. This element is used in making the propellant that activates aerosol sprays, a plastic that resists chemicals and oil and is strong enough to be used for bearings, compounds that are said to help to prevent tooth decay, and many other useful chemicals.
The mineral is fluorite ([fig. 9]), commonly called fluorspar. It is composed of calcium fluoride (CaF₂), a compound of calcium and fluorine, and is a glassy mineral that is generally white or gray but may be purple, rose, yellow, blue, or green. In rare instances it is colorless.
Fluorspar mining in Hardin and Pope Counties began with lead mining. Galena was first discovered there in 1839 in a well being dug at the town of Rosiclare. Mining of galena began in the early 1840’s, and somewhat later ore was being smelted by three furnaces, all of which have long since disappeared.
The veins that were worked for galena also contained fluorspar, but as there was little or no use for fluorspar in the 1840’s it was considered waste. In time, uses developed, however, and about 1870 it was mined and shipped in commercial quantities. Since then the tonnage and value of the fluorspar produced from the Rosiclare area have increased until fluorspar is the major product.
Figure 9—Group of cubic fluorite crystals.
The fluorspar mining district north of the town of Cave in Rock in eastern Hardin County also was an early producer of galena. In that area the fluorspar-galena deposits are elongate and approximately flat. The first miners followed the ore bodies from outcrops by tunneling into the hillsides. In the late 1930’s and early 1940’s, many holes were drilled into the bedrock in search of new deposits. Ore was found that contained not only galena and fluorspar but also important amounts of sphalerite.
Vein Deposits.—In the Rosiclare district, the fluorspar and its accompanying minerals occur as steeply inclined veins a few inches to 25 feet or more wide ([fig. 10]), usually in limestone strata. The veins are not uniformly thick but widen or narrow from place to place both vertically and horizontally. They occur along faults—planes along which the rocks of the earth’s crust have broken and slipped. A fault may be a single plane of slippage but more often is a zone of broken and displaced rocks. In most of the faults that contain fluorspar, the slippage is vertical, or nearly so. Along one of the faults in the Rosiclare district, the rocks on one side of the fault have moved downward as much as 650 feet in relation to the rocks on the other side. Some faults are more than 10 miles long, and the depth to which they extend into the earth is unknown. Fluorspar has been mined from one of them at depths of 800 feet. Not all faults, nor all parts of any one fault, contain fluorspar.
Figure 10—Diagrammatic cross section of fluorspar vein along a fault. The strata on the left side of the fault have moved downward with reference to those on the right side.
SOIL FAULT FLUORSPAR VEIN ALONG FAULT down SANDSTONE A LIMESTONE B SHALE C SANDSTONE D LIMESTONE E up LIMESTONE B SHALE C SANDSTONE D LIMESTONE E
Bedding Deposits.—In contrast to the vein deposits of the Rosiclare district, the bedding deposits of the Cave in Rock area are flat, or nearly flat, commonly 5 to 15 feet thick, and from a few to 200 feet wide ([fig. 11]). They may be as much as 2000 feet long, widening or narrowing and thickening or thinning throughout their extent. They are called bedding deposits because they lie along the beds or layers of the limestone in which they occur. Most of the ore bodies are associated with a fracture or a small fault.
Figure 11—Diagrammatic cross section of bedding deposit of fluorspar, lead, and zinc ore.
SOIL SANDSTONE AND SHALE ORE LIMESTONE FRACTURE OR SMALL FAULT
Grades and Uses of Fluorspar.—There are three principal grades of fluorspar—metallurgical, acid, and ceramic. The metallurgical spar is used as a flux in making steel and in metal foundries. Acid spar is used to make hydrofluoric acid, which plays a part in the preparation of uranium isotopes and in the production of a synthetic mineral essential in refining aluminum. The acid is also used in the production of high-octane gasoline and is the basis for a variety of important chemical compounds, among them refrigerants and insecticides. Ceramic grade fluorspar is used in making enamels, glazes, and certain kinds of glass.
Mining and Milling.—Fluorspar and its associated ores are mined in different ways in the Rosiclare and Cave in Rock districts because the types of deposits differ. However, in both areas most of the larger mines are entered by vertical shafts. In the mines, explosives are placed in holes drilled by machines and are then detonated to shoot down the ore ([fig. 12]). Mine cars, trucks, or conveyor belts carry the ore to the bottom of the mine shaft where hoists raise it to the mills at the surface. In the mills a variety of ore-classifying machines separate the galena, sphalerite, and fluorspar from the waste mineral materials (chiefly limestone and calcite) with which they occur. Some fluorspar after the separation process is almost flour-fine. To increase its use, much of this spar is mixed with a binder and made into pellets or briquets one-half to one inch in size.
Figure 12—Machine loading fluorspar ore in mine near Cave in Rock.
Geological and Chemical Studies.—Because much of the fluorspar produced in southern Illinois has come from veins along faults, geologists have mapped the faults of the area by investigating the distribution and nature of the various bedrock outcrops. The work was complicated by the mantle of earth and vegetation that covers the bedrock at many places. However, a geologic map was made that shows where the various rock formations—sandstone, limestone, and shale—lie beneath the surface and where the numerous faults crisscross the district.
The first geologic map of the fluorspar district was made in 1920 by the Illinois and U. S. Geological Surveys. New maps on a much larger scale have been made recently by the Illinois Survey to meet the needs of the modern fluorspar industry.
The Illinois Survey also has studied the ores and ore deposits of southern Illinois to determine how they were formed. The records of many borings and pits sunk to find ore have been collected and filed at the Survey to guide future prospecting.
Survey chemists are finding new uses for Illinois fluorspar. Their research has produced new organic fluorine compounds that are being tested for use in agriculture, medicine, and industry. They also have worked out easier and cheaper methods of making certain fluorine compounds. Survey chemical engineers have helped to obtain needed information about the physical properties of the pellets made from fluorspar powder.