Fossils.
The name of Fossil (from fossilis, dug up) is given to all organised bodies, animal or vegetable, buried naturally in the terrestrial strata, and more or less petrified, that is, converted into stone. Fossils of the older formations are remains of organisms which, so far as species is concerned, are quite extinct; and only those of recent formations belong to genera living in our days. These fossil remains have neither the beauty nor the elegance of most living species, being mutilated, discoloured, and often almost shapeless; they are, therefore, interesting only in the eyes of the observer who would interrogate them, and who seeks to reconstruct, with their assistance, the Fauna and Flora of past ages. Nevertheless, the light they throw upon the past history of the earth is of the most satisfactory description, and the science of fossils, or palæontology, is now an important branch of geological inquiry. Fossil shells, in the more recent deposits, are found scarcely altered; in some cases only an impression of the external form is left—sometimes an entire cast of the shell, exterior and interior. In other cases the shell has left a perfect impression of its form in the surrounding mud, and has then been dissolved and washed away, leaving only its mould. This mould, again, has sometimes been filled up by calcareous spar, silica, or pyrites, and an exact cast of the original shell has thus been obtained. Petrified wood is also of very common occurrence.
These remains of an earlier creation had long been known to the curious, and classed as freaks of Nature, for so we find them described in the works of the ancient philosophers who wrote on natural history, and in the few treatises on the subject which the Middle Ages have bequeathed to us. Fossil bones, especially those of elephants, were known to the ancients, giving rise to all sorts of legends and fabulous histories: the tradition which attributed to Achilles, to Ajax, and to other heroes of the Trojan war, a height of twenty feet, is attributable, no doubt, to the discovery of the bones of elephants near their tombs. In the time of Pericles we are assured that in the tomb of Ajax a patella, or knee-bone of that hero, was found, which was as large as a dinner-plate. This was probably only the patella of a fossil elephant.
The uses to which fossils are applied by the geologist are—First, to ascertain the relative age of the formations in which they occur; secondly, the conditions under which these were deposited. The age of the formation is determined by a comparison of the fossils it contains with others of ascertained date; the conditions under which the rocks were deposited, whether marine, lacustrine, or terrestrial, are readily inferred from the nature of the fossils. The great artist, Leonardo da Vinci, was the first to comprehend the real meaning of fossils, and Bernard Palissy had the glory of being the first modern writer to proclaim the true character of the fossilised remains which are met with, in such numbers, in certain formations, both in France and Italy, particularly in those of Touraine, where they had come more especially under his notice. In his work on “Waters and Fountains,” published in 1580, he maintains that the figured stones, as fossils were then called, were the remains of organised beings preserved at the bottom of the sea. But the existence of marine shells upon the summits of mountains had already arrested the attention of ancient authors. Witness Ovid, who in Book XV. of the “Metamorphoses” tells us he had seen land formed at the expense of the sea, and marine shells lying dead far from the ocean; and more than that, an ancient anchor had been found on the very summit of a mountain.
“Vidi factas ex æquore terras,
Et procul a pelago conchæ jacuere marinæ,
Et vetus inventa est in montibus anchora summis.”
Ov., Met., Book xv.
The Danish geologist Steno, who published his principal works in Italy about the middle of the seventeenth century, had deeply studied the fossil shells discovered in that country. The Italian painter Scilla produced in 1670 a Latin treatise on the fossils of Calabria, in which he established the organic nature of fossil shells.
The eighteenth century gave birth to two very opposite theories as to the origin of our globe—namely, the Plutonian or igneous, and the Neptunian or aqueous theory. The Italian geologists gave a marked impulse to the study of fossils, and the name of Vallisneri[1] may be cited as the author to whom science is indebted for the earliest account of the marine deposits of Italy, and of the most characteristic organic remains which they contain. Lazzaro Moro[2] continued the studies of Vallisneri, and the monk Gemerelli reduced to a complete system the ideas of these two geologists, endeavouring to explain all the phenomena as Vallisneri had wished, “without violence, without fiction, without miracles.” Marselli and Donati both studied in a very scientific manner the fossil shells of Italy, and in particular those of the Adriatic, recognising the fact that they affected in their beds a regular and constant order of superposition.[3]
In France the celebrated Buffon gave, by his eloquent writings, great popularity to the notions of the Italian naturalists concerning the origin of fossil remains. In his admirable “Époques de la Nature” he sought to prove that the shells found in great quantities buried in the soil, and even on the tops of mountains, belonged, in reality, to species not living in our days. But this idea was too novel not to find objectors: it counted among its adversaries the bold philosopher who might have been expected to adopt it with most ardour. Voltaire attacked, with his jesting and biting criticism, the doctrines of the illustrious innovator. Buffon insisted, reasonably enough, that the presence of shells on the summit of the Alps was a proof that the sea had at one time occupied that position. But Voltaire asserted that the shells found on the Alps and Apennines had been thrown there by pilgrims returning from Rome. Buffon might have replied to his opponent, by pointing out whole mountains formed by the accumulation of these shells. He might have sent him to the Pyrenees, where shells of marine origin cover immense areas to a height of 6,600 feet above the present sea-level. But his genius was averse to controversy; and the philosopher of Ferney himself put an end to a discussion in which, perhaps, he would not have had the best of the argument. “I have no wish,” he wrote, “to embroil myself with Monsieur Buffon about shells.”
It was reserved for the genius of George Cuvier to draw from the study of fossils the most wonderful results: it is the study of these remains, in short, which, in conjunction with mineralogy, constitutes in these days positive geology. “It is to fossils,” says the great Cuvier, “that we owe the discovery of the true theory of the earth; without them we should not have dreamed, perhaps, that the globe was formed at successive epochs, and by a series of different operations. They alone, in short, tell us with certainty that the globe has not always had the same envelope; we cannot resist the conviction that they must have lived on the surface of the earth before being buried in its depths. It is only by analogy that we have extended to the primary formations the direct conclusions which fossils furnish us with in respect to the secondary formations; and if we had only unfossiliferous rocks to examine, no one could maintain that the earth was not formed all at once.”[4]
The method adopted by Cuvier for the reconstruction and restoration of the fossil animals found in the plaster-quarries of Montmartre, at the gates of Paris, has served as a model for all succeeding naturalists; let us listen, then, to his exposition of the vast problem whose solution he proposed to himself. “In my work on fossil bones,” he says, “I propose to ascertain to what animals the osseous fragments belong; it is seeking to traverse a road on which we have as yet only ventured a few steps. An antiquary of a new kind, it seemed to me necessary to learn both to restore these monuments of past revolutions, and to decipher their meaning. I had to gather and bring together in their primitive order the fragments of which they are composed; to reconstruct the ancient beings to which these fragments belonged; to reproduce them in their proportions and with their characteristics; to compare them, finally, with others now living on the surface of the globe: an art at present little known, and which supposes a science scarcely touched upon as yet, namely, that of the laws which preside over the co-existence of the forms of the several parts in organised beings. I must, then, prepare myself for these researches by others, still more extended, upon existing animals. A general review of actual creation could alone give a character of demonstration to my account of these ancient inhabitants of the world; but it ought, at the same time, to give me a great collection of laws, and of relations not less demonstrable, thus forming a body of new laws to which the whole animal kingdom could not fail to find itself subject.”[5]
“When the sight of a few bones inspired me, more than twenty years ago, with the idea of applying the general laws of comparative anatomy to the reconstruction and determination of fossil species; when I began to perceive that these species were not quite perfectly represented by those of our days, which resembled them the most—I no longer doubted that I trod upon a soil filled with spoils more extraordinary than any I had yet seen, and that I was destined to bring to light entire races unknown to the present world, and which had been buried for incalculable ages at great depths in the earth.
“I had not yet given any attention to the published notices of these bones, by naturalists who made no pretension to the recognition of their species. To M. Vaurin, however, I owe the first intimation of the existence of these bones, with which the gypsum-quarries swarm. Some specimens which he brought me one day struck me with astonishment; I learned, with all the interest the discovery could inspire me with, that this industrious and zealous collector had already furnished some of them to other collectors. Received by these amateurs with politeness, I found in their collections much to confirm my hopes and heighten my curiosity. From that time I searched in all the quarries with great care for other bones, offering such rewards to the workmen as might awaken their attention. I soon got together more than had ever been previously collected, and after a few years I had nothing to desire in the shape of materials. But it was otherwise with their arrangement, and with the reconstruction of the skeleton, which could alone lead to any just idea of the species.
“From the first moment of discovery I perceived that, in these remains, the species were numerous. Soon afterwards I saw that they belonged to many genera, and that the species of the different genera were nearly the same size, so that size was likely rather to hinder than aid me. Mine was the case of a man to whom had been given at random the mutilated and imperfect remains of some hundreds of skeletons belonging to twenty sorts of animals; it was necessary that each bone should find itself alongside that to which it ought to be connected: it was almost like a small resurrection, and I had not at my disposal the all-powerful trumpet; but I had the immutable laws prescribed to living beings as my guide; and at the voice of the anatomist each bone and each part of a bone took its place. I have not expressions with which to describe the pleasure I experienced in finding that, as soon as I discovered the character of a bone, all the consequences of the character, more or less foreseen, developed themselves in succession: the feet were found conformable to what the teeth announced; the teeth to that announced by the feet; the bones of the legs, of the thighs, all those which ought to reunite these two extreme parts, were found to agree as I expected; in a word, each species was reproduced, so to speak, from only one of its elements.”[6]
While the Baron Cuvier was thus zealously prosecuting his inquiries in France, assisted by many eminent fellow-labourers, what was the state of geological science in the British Islands? About that same time, Dr. William Smith, better known as “the father of English geology,” was preparing, unaided, the first geological map of this country. Dr. Smith was a native of Wiltshire, and a canal engineer in Somersetshire; his pursuits, therefore, brought him in the midst of these hieroglyphics of Nature. It was his practice, when travelling professionally, during many years to consult masons, miners, wagoners, and agriculturists. He examined the soil; and in the course of his inquiries he came to the conclusion that the earth was not all of the same age; that the rocks were arranged in layers, or strata, superimposed on each other in a certain definite order, and that the strata, when of the same age, could be identified by means of their organic remains. In 1794 he formed the plan of his geological map, showing the superposition of the various beds; for a quarter of a century did he pursue his self-allotted task, which was at last completed, and in 1801 was published, being the first attempt to construct a stratigraphical map.
Taking the men in the order of the objects of their investigation, rather than in chronological order, brings before us the patient and sagacious investigator to whom we are indebted for our knowledge of the Silurian system. For many years a vast assemblage of broken and contorted beds had been observed on the borders of North Wales, stretching away to the east as far as Worcestershire, and to the south into Gloucester, now rising into mountains, now sinking into valleys. The ablest geologists considered them as a mere labyrinth of ruins, whose order of succession and distinctive organic remains were entirely unknown, “But a man came,” as M. Esquiros eloquently writes, “who threw light upon this sublime confusion of elements.” Sir Roderick Impey Murchison, then a young President of the Geological Society, had his attention directed, as he himself informs us, to some of these beds on the banks of the Wye. After seven years of unremitting labour, he was rewarded by success. He established the fact that these sedimentary rocks, penetrated here and there by eruptive masses of igneous origin, formed a unique system, to which he gave the name of Silurian, because the rocks which he considered the most typical of the whole were most fully developed, charged with peculiar organic remains, in the land of the ancient Silures, who so bravely opposed the Roman invaders of their country. Many investigators have followed in Sir Roderick’s steps, but few men have so nobly earned the honours and fame with which his name is associated.
The success which attended Sir R. Murchison’s investigations soon attracted the attention of other geologists. Professor Sedgwick examined the older slaty strata, and succeeded in proving the position of the Cambrian rocks to be at the base of the Silurian. Still it was reserved for Sir William Logan, the Director of the Canadian Geological Survey, to establish the fact that immense masses of gneissic formation lay at the base of the Cambrian; and, by subsequent investigations, Sir Roderick Murchison satisfied himself that this formation was not confined to Canada, but was identical with the rocks termed by him Fundamental Gneiss, which exist in enormous masses on the west coast of Scotland, and which he proved to be the oldest stratified rocks in the British Isles. Subsequently he demonstrated the existence of these same Laurentian rocks in Bohemia and Bavaria, far beneath the Silurian rocks of Barrande.
While Murchison and Sedgwick were prosecuting their inquiries into the Silurian rocks, Hugh Miller and many others had their attention occupied with the Old Red Sandstone—the Devonian of Sedgwick and Murchison—which immediately overlies them. After a youth passed in wandering among the woods and rocks of his native Cromarty, the day came when Miller found himself twenty years of age, and, for the time, a workman in a quarry. A hard fate he thought it at the time, but to him it was the road to fame and success in life. The quarry in which he laboured was at the bottom of a bay formed by the mouth of a river opening to the south, a clear current of water on one side, as he vividly described it, and a thick wood on the other. In this silent spot, in the remote Highlands, a curious fossil fish of the Old Red Sandstone was revealed to him; its appearance struck him with astonishment; a fellow-workman named a spot where many such monuments of a former world were scattered about; he visited the place, and became a geologist and the historian of the “Old Red.” And what strange fantastic forms did it afterwards fall to his lot to describe! “The figures on a China vase or Egyptian obelisk,” he says, “differ less from the real representation of the objects than the fossil fishes of the ‘Old Red’ differ from the living forms which now swim in our seas.”
The Carboniferous Limestone, which underlies the coal, the Coal-measures themselves, the New Red Sandstone, the Lias, and the Chalk, have in their turn found their historians; but it would be foreign to our object to dwell further here on these particular branches of the subject.
Some few of the fossilised beings referred to resemble species still found living, but the greater part belong to species which have become altogether extinct. These fossil remains may constitute natural families, none of the genera of which have survived. Such is the Pterodactyle among Pterosaurian reptiles; the Ammonite among Mollusca; the Ichthyosaurus and the Plesiosaurus among the Enaliosaurian reptiles. At other times there are only extinct genera, belonging to families of which there are still some genera now living, as the genus Palæoniscus among fishes. Finally, in Tertiary deposits, we meet with some extinct species belonging to genera of our existing fauna: the Mammoth, for example, of the youngest Tertiary deposits, is an extinct species of the genus elephant.
Some fossils are terrestrial, like the gigantic Irish stag, Cervus Megaceros, the snail or Helix; fluviatile or lacustrine, like the Planorbis, the Lymnæa, the Physa, and the Unio; marine, or inhabiting the sea exclusively, as the Cowry (Cypræa), and the Oyster, (Ostrea).
Fossils are sometimes preserved in their natural state, or are but very slightly changed. Such is the state of some of the bones extracted from the more recent caves; such, also, is the condition of the insects found enclosed in the fossil resins in which they have been preserved from decomposition; and certain shells, found in recent and even in old formations, such as the Jurassic and Cretaceous strata—in some of which the shells retain their colours, as well as their brilliant pearly lustre or nacre. At Trouville, in Normandy, in the Kimeridge strata, magnificent Ammonites are found in the clay and marl, all brilliant with the colours of mother-of-pearl. In the Cretaceous beds at Machéroménil, some species of Ancyloceras and Hamites are found still covered with a nacre, displaying brilliant reflections of blue, green, and red, and retaining an admirable lustre. At Glos, near Liseaux, in the Coral Rag, not only the Ammonites, but the Trigoniæ and Aviculæ have preserved all their brilliant nacre. Sometimes these remains are much changed, the organic matter having entirely disappeared; it sometimes happens also, though rarely, that they become petrified, that is to say, the external form is preserved, but the original organic elements have wholly disappeared, and have been replaced by foreign mineral substances—generally by silica or by carbonate of lime.
Fig. 1.—Labyrinthodon pachygnathus and footmarks.
Geology also enables us to draw very important conclusions from certain fossil remains whose true nature was long misunderstood, and which, under the name of coprolites, had given rise to much controversial discussion. Coprolites are the petrified excrements of extinct fossil animals. The study of these singular remains has thrown unexpected light on the habits and physiological organisation of some of the great antediluvian animals. Their examination has revealed the scales and teeth of fishes, thus enabling us to determine the kind of food in which the animals of the ancient world indulged: for example, the coprolites of the great marine reptile which bears the name of Ichthyosaurus contain the bones of other animals, together with the remains of the vertebræ, or of the phalanges (paddle-bones) of other Ichthyosauri; showing that this animal habitually fed on the flesh of its own species, as many fishes, especially the more voracious ones, do in our days.
The imprints left upon mud or sand, which time has hardened and transformed into sandstone, furnish to the geologist another series of valuable indications. The reptiles of the ancient world, the turtles in particular, have left upon the sands, which time has transformed into blocks of stone, impressions which evidently represent the exact moulds of the feet of those animals. These impressions have, sometimes, been sufficient for naturalists to determine to what species the animal belonged which thus left its impress on the wet ground. Some of these exhibit tracks to which we shall have occasion to refer; others present traces of the footprints of the great reptile known as the Labyrinthodon or Cheirotherium, whose footmarks slightly resemble the impression made by the human hand ([Fig. 1]). Another well-known impression, which has been left upon the sandstone of Corncockle Moor, in Dumfriesshire, is supposed to be the impress of the foot of some great fossil Turtle.
We may be permitted to offer a short remark on this subject. The historian and antiquary may traverse the battle-fields of the Greeks and Romans, and search in vain for traces of those conquerors, whose armies ravaged the world. Time, which has overthrown the monuments of their victories, has also effaced the marks of their footsteps; and of the many millions of men whose invasions have spread desolation throughout Europe, not even a trace of a footprint is left. Those reptiles, on the other hand, which crawled thousands of ages ago on the surface of our planet when it was still in its infancy, have impressed on the soil indelible proofs of their existence. Hannibal and his legions, the barbarians and their savage hordes, have passed over the land without leaving a material mark of their passage; while the poor turtle, which dragged itself along the silent shores of the primitive seas, has bequeathed to learned posterity the image and impression of a part of its body. These imprints may be perceived as distinctly on the rocks, as the traces left on moist sand or in newly-fallen snow by some animal walking under our own eyes. What grave reflections should be awakened within us at the sight of these blocks of hardened earth, which thus carry back our thoughts to the early ages of the world! and how insignificant seem the discoveries of the archæologist who throws himself into ecstacies before some piece of Greek or Etruscan pottery, when compared with these veritable antiquities of the earth!
Fig. 2.—Impressions of rain-drops.
The palæontologist (from παλαιος “ancient,” οντος “being,” λογος “discourse”), who occupies himself with the study of animated beings which have lived on the earth, takes careful account also of the sort of moulds left by organised bodies in the fine sediment which has enveloped them after death. Many organic beings have left no trace of their existence in Nature, except their impressions, which we find perfectly preserved in the sandstone and limestone, in marl or clay, and in the coal-measures; and these moulds are sufficient to tell us the kind to which the living animals belonged. We shall, no doubt, astonish our readers when we tell them that there are blocks of sandstone with distinct impressions of drops of rain which had fallen upon sea-shores of the ancient world. The impressions of these rain-drops, made upon the sands, were preserved by desiccation; and these same sands, being transformed by subsequent hardening into solid and coherent sandstones, their impressions have been thus preserved to the present day. [Fig. 2] represents impressions of this kind upon the sandstone of Connecticut river in America, which have been reproduced from the block itself by photography. In a depression of the granitic rocks of Massachusetts and Connecticut, the red sandstone occupies an area of a hundred and fifty miles in length from north to south, and from five to ten miles in breadth. “On some shales of the finest texture,” says Sir Charles Lyell, “impressions of rain-drops may be seen, and casts of them in the argillaceous sandstones.” The same impressions occur in the recent red mud of the Bay of Fundy. In addition to these, the undulations left by the passage of the waters of the sea, over the sands of the primitive world, are preserved by the same physical agency. Traces of undulations of this kind have been found in the neighbourhood of Boulogne-sur-Mer, and elsewhere. Similar phenomena occur in a still more striking manner in some sandstone-quarries worked at Chalindrey (Haute-Marne). The strata there present traces of the same kind over a large area, and along with them impressions of the excrements of marine worms. One may almost imagine oneself to be standing on the sea-shore while the tide is ebbing.