JURASSIC PERIOD.
This period, one of the most important in the physical history of the globe, has received its name from the Jura mountains in France, the Jura range being composed of the rocks deposited in the seas of the period. In the term Jurassic, the formations designated as the “Oolite” and “Lias” are included, both being found in the Jura mountains. The Jurassic period presents a very striking assemblage of characteristics, both in its vegetation and in the animal remains which belong to it; many genera of animals existing in the preceding age have disappeared, new genera have replaced them, comprising a very specially organised group, containing not less than 4,000 species.
The Jurassic period is sub-divided into two sub-periods: those of the Lias and the Oolite.
The Lias
is an English provincial name given to an argillaceous limestone, which, with marl and clay, forms the base of the Jurassic formation, and passes almost imperceptibly into the Lower Oolite in some places, where the Marlstone of the Lias partakes of the mineral character, as well as the fossil remains of the Lower Oolite; and it is sometimes treated of as belonging to that formation. “Nevertheless, the Lias may be traced throughout a great part of Europe as a separate and independent group, of considerable thickness, varying from 500 to 1,000 feet, containing many peculiar fossils, and having a very uniform lithological aspect.”[61] The rocks which represent the Liassic period form the base of the Jurassic system, and have a mean thickness of about 1,200 feet. In the inferior part we find argillaceous sandstones, which are called the sandstones of the Lias, and comprehend the greater part of the Quadersandstein, or building-stone of the Germans, above which comes compact limestone, argillaceous, bluish, and yellowish; finally, the formation terminates in the marlstones which are sometimes sandy, and occasionally bituminous.
The Lias, in England, is generally in three groups: 1, the upper, clays and shales, underlying sands; 2, the middle, lias or marlstone; and 3, the lower, clays and limestone; but these have been again sub-divided—the last into six zones, each marked by its own peculiar species of Ammonites; the second into three zones; the third consists of clay, shale, and argillaceous limestone. For the purposes of description we shall, therefore, divide the Lias into these three groups:—
1. Upper Lias Clay, consists of blue clay, or shale, containing nodular bands of claystones at the base, crowded with Ammonites serpentinus, A. bifrons, Belemnites, &c.
2. The Middle Lias, commonly known as the Marlstone, is surmounted by a bed of oolitic ironstone, largely worked in Leicestershire and in the north of England as a valuable ore of iron. The underlying marls and sands, the latter of which become somewhat argillaceous below, form beds from 200 to 300 feet thick in Dorsetshire and Gloucestershire; the fossils are Ammonites margaritaceus, A. spinatus, Belemnites tripartitus. The upper rock-beds, especially the bed of ironstone on the top, is generally remarkably rich in fossils.
Fig. 88.—Gryphæa incurva.
3. Lower Lias (averaging from 600 to 900 feet in thickness) consists, in the lower part, of thin layers of bluish argillaceous limestone, alternating with shales and clays; the whole overlaid by the blue clay of which the lower member of the Liassic group usually consists. This member of the series is well developed in Yorkshire, at Lyme Regis and Charmouth in Dorsetshire, and generally over the South-West and Midland Counties of England. Gryphæa incurva ([Fig. 88]), with sandy bands, occurs at the base, in addition to which we find Ammonites planorbis Bucklandi, A. Ostrea liassica, Lima gigantea, Ammonites Bucklandi, &c., in the lower limestones and shales.
Above the clay are yellow sands from 100 to 200 feet thick, underlying the limestone of the Inferior Oolite. These sands were, until lately, considered to belong to the latter formation—as they undoubtedly do physically—until they were shown, by Dr. Thomas Wright, of Cheltenham, to be more nearly allied, by their fossils, to the Lias below than to the Inferior Oolite above, into which they form the passage-beds.
In France the Lias abounds in the Calvados, in Burgundy, Lorraine, Normandy, and the Lyonnais. In the Vosges and Luxembourg, M. Elie de Beaumont states that the Lias containing Gryphæa incurva and Lima gigantea, and some other marine fossils, becomes arenaceous; and around the Harz mountains, in Westphalia and Bavaria, in its lower parts the formation is sandy, and is sometimes a good building-stone.
“In England the Lias constitutes,” says Professor Ramsay, “a well-defined belt of strata, running continuously from Lyme Regis, on the south-west, through the whole of England, to Yorkshire on the north-east, and is an extensive series of alternating beds of clay, shale, and limestone, with occasional layers of jet in the upper part. The unequal hardness of the clays and limestones of the Liassic strata causes some of its members to stand out in the distinct minor escarpments, often facing the west and north-west. The Marlstone forms the most prominent of these, and overlooks the broad meadows of the lower Lias-clay, that form much of the centre of England.” In Scotland there are few traces of the Lias. Zoophytes, Mollusca, and Fishes of a peculiar organisation, but, above all, Reptiles of extraordinary size and structure gave to the sea of the Liassic period an interest and features quite peculiar. Well might Cuvier exclaim, when the drawings of the Plesiosaurus were sent to him: “Truly this is altogether the most monstrous animal that has yet been dug out of the ruins of a former world!” In the whole of the English Lias there are about 243 genera, and 467 species of fossils. The whole series has been divided into zones characterised by particular Ammonites, which are found to be limited to them, at least locally.
Fig. 89.—Pentacrinites Briareus. Half natural size.
Among the Echinodermata belonging to the Lias we may cite Asterias lumbricalis and Palæocoma Furstembergii, which constitutes a genus not dissimilar to the star-fishes, of which its radiated form reminds us. The Pentacrinites, of which Pentacrinites Briareus is a type, ornaments many collections by its elegant form, and is represented in [Figs. 79] and [89]. It belongs to the order of Crinoidea, which is represented at the present time by a single living species, Pentacrinus caput-Medusæ, one of the rare and delicate Zoophytes of the Caribbean sea.
Oysters (Ostrea) made their appearance in the Muschelkalk of the last period, but only in a small number of species; they increased greatly in importance in the Liassic seas.
The Ammonites, a curious genus of Cephalopoda, which made their first appearance in small numbers towards the close of the preceding Triassic period, become quite special in the Secondary epoch, with the close of which they disappear altogether. They were very abundant in the Jurassic period, and, as we have already said, each zone is characterised by its peculiar species. The name is taken from the resemblance of the shell to the ram’s-horn ornaments which decorated the front of the temple of Jupiter Ammon and the bas-reliefs and statues of that pagan deity. They were Cephalopodous Mollusca with circular shells, rolled upon themselves symmetrically in the same plane, and divided into a series of chambers. The animal only occupied the outer chamber of the shell; all the others were empty. A siphon or tube issuing from the first chamber traversed all the others in succession, as is seen in all the Ammonites and Nautili. This tube enabled the animal to rise to the surface, or to sink to the bottom, for the Ammonite could fill the chambers with water at pleasure, or empty them, thus rendering itself lighter or heavier as occasion required. The Nautilus of our seas is provided with the same curious organisation, and reminds us forcibly of the Ammonites of geological times.
Shells are the only traces which remain of the Ammonites. We have no exact knowledge of the animal which occupied and built them. The attempt at restoration, as exhibited in [Fig. 91], will probably convey a fair idea of the Ammonite when living. We assume that it resembled the Nautilus of modern times. What a curious aspect these early seas must have presented, covered by myriads of these Molluscs of all sizes, swimming about in eager pursuit of their prey!
Fig. 90.—Ammonites Turneri, from the Lower Lias.
The Ammonites of the Jurassic age present themselves in a great variety of forms and sizes; some of them of great beauty. Ammonites bifrons, A. Noditianus, A. bisulcatus, A. Turneri ([Fig. 90]), and A. margaritatus, are forms characteristic of the Lias.
Fig. 91.—Ammonite restored.
The Belemnites, molluscous Cephalopods of a very curious organisation, appeared in great numbers, and for the first time, in the Jurassic seas. Of this Mollusc we only possess the fossilised internal “bone,” analogous to that of the modern cuttle-fish and the calamary of the present seas. This simple relic is very far from giving us an exact idea of what the animal was to which the name of Belemnite has been given (from Βελεμνον, a dart) from their supposed resemblance to the head of a javelin. The slender cylindrical bone, the only vestige remaining to us, was merely the internal skeleton of the animal. When first discovered they were called, by the vulgar, “Thunder-stones” and “Ladies’ fingers.” They were, at last, inferred to be the shelly processes of some sort of ancient cuttle-fish. Unlike the Ammonite, which floated on the surface and sunk to the bottom at pleasure, the Belemnite, it has been thought, swam nearer the bottom of the sea, and seized its prey from below.
Fig. 92.—Belemnite restored.
In [Fig. 92] is given a restoration of the living Belemnite, by Dr. Buckland and Professor Owen, in which the terminal part of the animal is marked in a slightly darker tint, to indicate the place of the bone which alone represents in our days this fossilised being. A sufficiently exact idea of this Mollusc may be arrived at from the existing cuttle-fish. Like the cuttle-fish, the Belemnite secreted a black liquid, a sort of ink or sepia; and the bag containing the ink has frequently been found in a fossilised state, with the ink dried up, and elaborate drawings have been made with this fossil pigment.
The beaks, or horny mandibles of the mouth, which the Belemnite possessed in common with the other naked Cephalopoda, are represented in [Fig. 78], p. 181.
As Sir H. De la Beche has pointed out, the destruction of the animals whose remains are known to us by the name of Belemnites was exceedingly great when the upper part of the Lias of Lyme Regis was deposited. Multitudes seem to have perished almost simultaneously, and millions are entombed in a bed beneath Golden Cap, a lofty cliff between Lyme Regis and Bridport Harbour, as well as in the upper Lias generally.[62]
Among the Belemnites characteristic of the Liassic period may be cited B. acutus ([Fig. 93]), B. pistiliformis, and B. sulcatus.
Fig. 93.—Belemnites acutus.
The seas of the period contained a great number of the fishes called Ganoids; which are so called from the splendour of the hard and enamelled scales, which formed a sort of defensive armour to protect their bodies. Lepidotus gigas was a fish of great size belonging to this age. A smaller fish was the Tetragonolepis, or Æchmodus Buchii. The Acrodus nobilis, of which the teeth are still preserved, and popularly known by the name of fossil leeches, was a fish of which an entire skeleton has never been met with. Neither are we better informed as to the Hybodus reticulatus. The bony spines, which form the anterior part of the dorsal fin of this fish, had long been an object of curiosity to geologists, under the general name of Ichthyodorulites, before they were known to be fragments of the fin of the Hybodus. The Ichthyodorulites were supposed by some naturalists to be the jaw of some animal—by others, weapons like those of the living Balistes or Silurus; but Agassiz has shown them to be neither the one nor the other, but bony spines on the fin, like those of the living genera of Cestracions and Chimæras, in both of which the concave face is armed with small spines like those of the Hybodus. The spines were simply imbedded in the flesh, and attached to it by strong muscles. “They served,” says Dr. Buckland, “as in the Chimæra, to raise and depress the fin, their action resembling that of a movable mast lowering backward.”
Fig. 94.—Ichthyosaurus communis.
Let us hasten to say, however, that these are not the beings that characterised the age, and were the salient features of the generation of animals which existed during the Jurassic period. These distinguishing features are found in the enormous reptiles with lizard’s head, crocodile’s conical teeth, the trunk and tail of a quadruped, whale-like paddles, and the double-concave vertebræ of fishes; and this strange form, on such a gigantic scale that even their inanimate remains are examined with a curiosity not unmixed with awe. The country round Lyme Regis, in Dorsetshire, has long been celebrated for the curious fossils discovered in its quarries, and preserved in the muddy accumulations of the sea of the Liassic period. The country is hilly—“up one hill and down another,” is a pretty correct provincial description of the walk from Bridport to Lyme Regis—where some of the most frightful creatures the living world has probably ever beheld, sleep the sleep of stones. The quarries of Lyme Regis form the cemetery of the Ichthyosauri; the sepulchre where lie interred these dragons of the ancient seas.
In 1811 a country girl, who made her precarious living by picking up fossils for which the neighbourhood was famous, was pursuing her avocation, hammer in hand, when she perceived some bones projecting a little out of the cliff. Finding, on examination, that it was part of a large skeleton, she cleared away the rubbish, and laid bare the whole creature imbedded in the block of stone. She hired workmen to dig out the block of Lias in which it was buried. In this manner was the first of these monsters brought to light: “a monster some thirty feet long, with jaws nearly a fathom in length, and huge saucer-eyes; which have since been found so perfect, that the petrified lenses have been split off and used as magnifiers,” as a writer in All the Year Round assures us.
Fig. 95.—Head of Ichthyosaurus platydon.
In [Fig. 95] the head of I. platydon is represented. As in the Saurians, the openings of the nostrils are situated near the anterior angle of the orbits of the eyes, while those of the Crocodile are near the snout; but, on the other hand, in its osteology and its mode of dentition it nearly resembles the Crocodile; the teeth are pointed and conical—not, however, set in deep or separate sockets, but only implanted in a long and deep continuous groove hollowed in the bones of the jaw. These strong jaws have an enormous opening; for, in some instances, they have been found eight feet in length and armed with 160 teeth. Let us add that teeth lost through the voracity of the animal, or in contests with other animals, could be renewed many times; for, at the inner side of the base of every old tooth, there is always the bony germ of a new one.
The eyes of this marine monster were much larger than those of any animal now living; in volume they frequently exceed the human head, and their structure was one of their most remarkable peculiarities. In front of the sclerotic coat or capsule of the eye there is an annular series of thin bony plates, surrounding the pupil. This structure, which is now only met with in the eyes of certain turtles, tortoises, and lizards, and in those of many birds, could be used so as to increase or diminish the curvature of the transparent cornea, and thus increase or diminish the magnifying power, according to the requirements of the animal—performing the office, in short, of a telescope or microscope at pleasure. The eyes of the Ichthyosaurus were, then, an optical apparatus of wonderful power and of singular perfection, enabling the animal, by their power of adaptation and intensity of vision, to see its prey far and near, and to pursue it in the darkness and in the depths of the sea. The curious arrangement of bony plates we have described furnished, besides, to its globular eye, the power necessary to bear the pressure of a considerable weight of water, as well as the violence of the waves, when the animal came to the surface to breathe, and raised its head above the waves. This magnificent specimen of the fish-lizard, or Ichthyosaurus, as it was named by Dr. Ure, now forms part of the treasures of the British Museum.
At no period in the earth’s history have Reptiles occupied so important a place as they did in the Jurassic period. Nature seems to have wished to bring this class of animals to the highest state of development. The great Reptiles of the Lias are as complicated in their structure as the Mammals which appeared at a later period. They probably lived, for the most part, by fishing in shallow creeks and bays defended from heavy breakers, or in the open sea; but they seem to have sought the shore from time to time; they crawled along the beach, covered with a soft skin, perhaps not unlike some of our Cetaceæ. The Ichthyosaurus, from its form and strength, may have braved the waves of the sea as the porpoise does now. Its destructiveness and voracity must have been prodigious, for Dr. Buckland describes a specimen which had between its ribs, in the place where the stomach might be supposed to have been placed, the skeleton of a smaller one—a proof that this monster, not content with preying on its weaker neighbours, was in the habit of devouring its own kind. In the same waters lived the Plesiosaurus, with long neck and form more strange than that of the Ichthyosaurus; and these potentates of the seas were warmed by the same sun and tenanted the same banks, in the midst of a vegetation not unlike that which the climate of Africa now produces.
The great Saurians in the Lias of Lyme Regis seem to have suffered a somewhat sudden death, partly in consequence of a series of small catastrophes suddenly destroying the animals then existing in particular spots. “In general the bones are not scattered about, and in a detached state, as would happen if the dead animal had descended to the bottom of the sea, to be decomposed, or devoured piecemeal, as, indeed, might also happen if the creature floated for a time on the surface, one animal devouring one part, and another carrying off a different portion; on the contrary, the bones of the skeleton, though frequently compressed, as must arise from the enormous pressure to which they have so long been subjected, are tolerably connected, frequently in perfect, or nearly perfect, order, as if prepared by the anatomist. The skin, moreover, may sometimes be traced, and the compressed contents of the intestines may at times be also observed—all tending to show that the animals were suddenly destroyed, and as suddenly preserved.”[63]
These strange and gigantic Saurians seem almost to disappear during the succeeding geological periods; for, although they have been discovered as low down as the Trias in Germany, and as high up as the Chalk in England, they only appear as stragglers in these epochs; so, too, the Reptiles, the existing Saurians are, as it were, only the shadowy, feeble representatives of these powerful races of the ancient world.
Confining ourselves to well-established facts, we shall consider in some detail the best known of these fossil reptiles—the Ichthyosaurus, Plesiosaurus, and Pterodactyle.
The extraordinary creature which bears the name of Ichthyosaurus (from the Greek words Ιχθυς σαυρος, signifying fish-lizard), presents certain dispositions and organic arrangements which are met with dispersed in certain classes of animals now living, but they never seem to be again reunited in any single individual. It possesses, as Cuvier says, the snout of a dolphin, the head of a lizard, the jaws and teeth of a crocodile, the vertebræ of a fish, the head and sternum of a lizard, the paddles like those of a whale, and the trunk and tail of a quadruped.
Bayle appears to have furnished the best idea of the Ichthyosaurus by describing it as the Whale of the Saurians—the Cetacean of the primitive seas. It was, in fact, an animal exclusively marine; which, on shore, would rest motionless like an inert mass. Its whale-like paddles, and fish-like vertebræ, the length of the tail and other parts of its structure, prove that its habits were aquatic; as the remains of fishes and reptiles, and the form of its teeth, show that it was carnivorous. Like the Whale, also, the Ichthyosaurus breathed atmospheric air; so that it was under the necessity of coming frequently to the surface of the water, like that inhabitant of the deep. We can even believe, with Bayle, that it was provided, like the Whale, with vents or blowers, through which it ejected, in columns into the air, the water it had swallowed.
Fig. 96.—Ichthyosaurus platydon.
The dimensions of the Ichthyosaurus varied with the species, of which five are known and described. These are Ichthyosaurus communis, I. platydon, I. intermedius, I. tenuirostris, and I. Cuvierii, the largest being more than thirty feet in length.
Fig. 97.—Lower jaw of Ichthyosaurus. (Dr. Buckland.)
The short, thick neck of the Ichthyosaurus supported a capacious head, and was continued backwards, from behind the eyes, in a column composed of more than a hundred vertebræ. The animal being adapted, like the whale, for rapid movement through the water, its vertebræ had none of the invariable solidity of those of the Lizard or Crocodile, but rather the structure and lightness of those of Fishes. The section of these vertebræ presents two hollow cones, connected only by their summits to the centre of the vertebræ, which would permit of the utmost flexibility of movement. The ribs extended along the entire length of the vertebral column, from the head to the pelvis. The bones of the sternum, or that part of the frame which supported the paddles, present the same combinations with those of the sternum in the Ornithorhynchus, or Duck-billed Platypus, of New Holland, an animal which presents the singular combination of a mammalian furred quadruped having the bill of a duck and webbed feet; which dived to the bottom of the water in search of its food, and returned to the surface to breathe the air. In this phenomenon of living Nature the Creator seems to have repeated, in our days, the organic arrangements which he had originally provided for the Ichthyosaurus.
In order that the animal should be able to move with rapidity in the water, both its anterior and posterior members were converted into fins or paddles. The anterior fins were half as large again as the posterior. In some species each paddle was made up of nearly a hundred bones, of polygonal form, and disposed in series representing the phalanges of the fingers. This hand, jointed at the arm, bears resemblance, in osteological construction, to the paddles, without distinct fingers, of the Porpoise and the Whale. A specimen of the posterior fin of I. communis, discovered at Barrow-on-Soar, in Leicestershire, in 1840, by Sir Philip Egerton, exhibited on its posterior margin the remains of cartilaginous rays, which bifurcated as they approached the edge, like those in the fins of a fish. “It had previously been supposed,” says Professor Owen, “that the locomotive organs were enveloped, while living, in a smooth integument, like that of the turtle and porpoise, which has no other support than is afforded by the bones and ligaments within; but it now appears that the fin was much larger, expanding far beyond the osseous frame-work, and deviating widely in its fish-like rays from the ordinary reptilian type.” The Professor believes that, besides the fore-paddles, these stiff-necked Saurians were furnished at the end of the tail with a fin to assist them in turning, not placed horizontally, as in the whale, but vertically, forming a powerful instrument of progression and motion. It is obvious that the Ichthyosaurus was an animal powerfully armed for offence and defence. We cannot say, with certainty, whether the skin was smooth, like that of the whale or lizard, or covered with scales, like the great reptiles of our own age. Nevertheless, as the scales of the Fishes and the cuirass and horny armour of other Reptiles of the Lias are preserved, and as no such defensive scales have been found belonging to the Ichthyosaurus, it is probable that the skin was naked and smooth. The tail, composed of from eighty to eighty-five vertebræ, was provided with large and long paddles, arranged vertically as in the Whale.
Fig. 98.—Skeleton of Ichthyosaurus.
Containing teeth and bones of Fishes in a coprolitic form. One-fifteenth natural size.
It is curious to see to what a degree of perfection has been carried, in our days, the knowledge of the antediluvian animals, their habits, and their economy. [Fig. 98] represents the skeleton of an Ichthyosaurus found in the Lias of Lyme Regis, which still retains in its abdominal cavity coprolites, that is to say, the residue of digestion. The soft parts of the intestinal canal have disappeared, but the fæces themselves are preserved, and their examination informs us as to the alimentary regimen of this animal which has perished from the earth many thousands, perhaps millions, of years. Mary Anning, to whom we owe many of the discoveries made in the neighbourhood of Lyme Regis, her native place, had in her collection an enormous coprolite of the Ichthyosaurus. This coprolite ([Fig. 99]) contained some bones and scales of Fishes, and of divers Reptiles, well enough preserved to have their species identified. It only remains to be added that, among the bones, those of the Ichthyosaurus were often found, especially those of young individuals. The presence of the undigested remains of vertebræ and other bones of animals of its own species in the coprolites of the Ichthyosaurus proves, as we have already had occasion to remark, that this great Saurian must have been a most voracious monster, since it habitually devoured not only fish, but individuals of its own race—the smaller becoming the prey of the larger. The structure of the jaw of the Ichthyosaurus leads us to believe that the animal swallowed its prey without dividing it. Its stomach and intestines must, then, have formed a sort of pouch of great volume, filling entirely the abdominal cavity, and corresponding in extent to the great development of the teeth and jaws.
Fig. 99.—Coprolite, enclosing bones of small Ichthyosaurus.
The perfection with which its contents have been preserved in the fossilised coprolites, furnishes indirect proofs that the intestinal canal of the Ichthyosaurus resembled closely that of the shark and the dog-fish—fishes essentially voracious and destructive, which have the intestinal canal spirally convoluted, an arrangement which is exactly that indicated in some of the coprolites of the Ichthyosaurus, as is evident from the impressions which the folds of the intestine have left on the coprolite, of which [Fig. 100] is a representation. In the cliffs near Lyme Regis coprolites are abundant in the Liassic formation, and have been found disseminated through the shales and limestones along many miles of that coast.
Fig. 100.—Coprolite of Ichthyosaurus.
What an admirable privilege of science, which is able, by an examination of the simplest parts in the organisation of beings which lived ages ago, to give to our minds such solid teachings and such true enjoyments! “When we discover,” says Dr. Buckland, “in the body of an Ichthyosaurus the food which it has engulfed an instant before its death, when the intervals between its sides present themselves still filled with the remains of fishes which it had swallowed some ten thousand years ago, or a time even twice as great, all these immense intervals vanish, time disappears, and we find ourselves, so to speak, thrown into immediate contact with events which took place in epochs immeasurably distant, as if we occupied ourselves with the affairs of the previous day.”
Fig. 101.—Skull of Plesiosaurus restored. (Conybeare.)
a, profile; b, seen from above.
The name of Plesiosaurus (from the Greek words πλησιος, near, and σαυρος, lizard) reminds us that this animal, though presenting many peculiarities of general structure, is allied by its organisation to the Saurian or Lizard family, and, consequently, to the Ichthyosaurus.
The Plesiosaurus presents, in its organic structure, the most curious assemblage we have met with among the organic vestiges of the ancient world. The Plesiosaurus was a marine, air-breathing, carnivorous reptile, combining the characters of the head of a Lizard, the teeth of a Crocodile, a neck of excessive length resembling that of a Swan, the ribs of a Chameleon, a body of moderate size, and a very short tail, and, finally, four paddles resembling those of a Whale. Let us bestow a glance upon the remains of this strange animal which the earth has revealed, and which science has restored to us.
The head of the Plesiosaurus presents a combination of the characters belonging to the Ichthyosaurus, the Crocodile, and the Lizard. Its enormously long neck comprises a greater number of vertebræ than the neck of either the Camel, the Giraffe, or even the Swan, which of all the feathered race has the longest neck in comparison to the rest of the body. And it is to be remarked, that, contrary to what obtains in the Mammals, where the vertebræ of the neck are always seven, the vertebræ in birds increase in number with the length of the neck.
Fig. 102.—Skeleton of Plesiosaurus dolichodeirus restored. (Conybeare principally.)
The body is cylindrical and rounded, like that of the great marine Turtles. It was, doubtless, naked, i.e., not protected with the scales or carapace with which some authors have invested it; for no traces of such coverings have been found near any of the skeletons which have been hitherto discovered. The dorsal vertebræ are attached to each other by nearly plane surfaces like those of terrestrial quadrupeds, a mode of arrangement which must have deprived the whole of its vertebral column of much of its flexibility. Each pair of ribs surrounded the body with a complete girdle, formed of five pieces, as in the Chameleon and Iguana; whence, no doubt, as with the Chameleon, great facilities existed for the contraction and dilatation of the lungs.
Fig. 103.—Sternum and pelvis of Plesiosaurus. Pub., pubis; Isch., ischium; Il., ilium.
The breast, the pelvis, and the bones of the anterior and posterior extremities furnished an apparatus which permitted the Plesiosaurus, like the Ichthyosaurus and existing Cetaceans, to sink in the water and return to the surface at pleasure ([Fig. 103]). Prof. Owen, in his “Report on British Reptiles,” characterises them as air-breathing and cold-blooded animals; the proof that they respired atmospheric air immediately, being found in the position and structure of the nasal passages, and the bony mechanism of the thoracic duct and abdominal cavity. In the first, the size and position of the external nostrils ([Fig. 102]), combined with the structure of the paddles, indicate a striking analogy between the extinct Saurians and the Cetaceans, offering, as the Professor observes, “a beautiful example of the adaptation of structure to the peculiar exigencies of species.” While the evidence that they were cold-blooded animals is found in the flexible or unanchylosed condition of the osseous pieces of the occiput and other cranial bones of the lower jaw, and of the vertebral column; from which the Professor draws the conclusion that the heart was adapted for transmitting a part only of the blood through the respiratory organs; the absence of the ball-and-socket articulations of the bones of the vertebræ, the position of the nostrils near the summit of the head, the numerous short and flat digital bones, which must have been enveloped in a simple undivided integumentary sheath, forming in both fore and hind extremities a paddle closely resembling that of the living Cetacea. The paddles are larger and more powerful than those of the Ichthyosaurus, to compensate for the slight assistance the animal derived from the tail. The latter—shorter, as compared with the length of the rest of the body, than in the Ichthyosaurus—was more calculated to act the part of a rudder, in directing the course of the animal through the water, than as a powerful organ of propulsion.
Such were the strange combinations of form and structure in the Plesiosaurus and Ichthyosaurus—genera of animals whose remains have, after an interment extending to unknown thousands of years, been revealed to light and submitted to examination; nay, rebuilt, bone by bone, until we have the complete skeletons before us, and the habits of the animals described, as if they had been observed in life. Conybeare thus speaks of the supposed habits of these extinct forms, which he had built up from scanty materials: “That the Plesiosaurus was aquatic is evident from the form of its paddles; that it was marine is equally so, from the remains with which it is universally associated; that it may have occasionally visited the shore, the resemblance of its extremities to the turtle may lead us to conjecture; its motion, however, must have been very awkward on land; its long neck must have impeded its progress through the water, presenting a striking contrast to the organisation which so admirably fits the Ichthyosaurus for cutting through the waves. May it not, therefore, be concluded that it swam on or near the surface, arching back its long neck like the swan, and occasionally darting it down at the fish which happened to float within its reach? It may, perhaps, have lurked in shallow water along the coasts, concealed among the sea-weeds, and, raising its nostrils to the surface from a considerable depth, may have found a secure retreat from the assaults of dangerous enemies, while the length and flexibility of its neck may have compensated for the want of strength in its jaws, and incapacity for swift motion through the water, by the suddenness and agility of the attack they enabled it to make on every animal fitted to become its prey.”
Fig. 104.—Remains of Plesiosaurus macrocephalus. One-twelfth natural size.
The Plesiosaurus was first described by the Rev. W. D. Conybeare and Sir Henry De la Beche, in the “Geological Society’s Transactions” for 1821, and a restoration of P. dolichodeirus, the most common of these fossils, appeared in the same work for 1824. The first specimen was discovered, as the Ichthyosaurus had been previously, in the Lias of Lyme Regis; since then other individuals and species have been found in the same geological formation in various parts of England, Ireland, France, and Germany, and with such variations of structure that Professor Owen has felt himself justified in recording sixteen distinct species, of which we have represented P. dolichodeirus ([Fig. 102]), as restored by Conybeare, and P. macrocephalus ([Fig. 104]), with its skeleton, as moulded from the limestone of Lyme Regis, which has been placed in the Palæontological Gallery of the British Museum.
XV.—Ideal scene of the Lias with Ichthyosaurus and Plesiosaurus.
The Plesiosaurus was scarcely so large as the Ichthyosaurus. The specimen of I. platydon in the British Museum probably belonged to an animal four-and-twenty feet long, and some are said to indicate thirty feet, while there are species of Plesiosauri measuring eighteen and twenty, the largest known specimen of Plesiosaurus Cramptoni found in the lias of Yorkshire, and now in the Museum of the Royal Society of Dublin, being twenty-two feet four inches in length. On the opposite page ([Plate XV.]) an attempt is made to represent these grand reptiles of the Lias in their native element, and as they lived.
Cuvier says of the Plesiosaurus, “that it presents the most monstrous assemblage of characteristics that has been met with among the races of the ancient world.” This expression should not be understood in a literal sense; there are no monsters in Nature; in no living creature are the laws of organisation ever positively infringed; and it is more in accordance with the general perfection of creation to see in an organisation so special, in a structure which differs so notably from that of the animals of our own days, the simple development of a type, and sometimes also the introduction of beings, and successive changes in their structure. We shall see, in examining the curious series of animals of the ancient world, that the organisation and physiological functions go on improving unceasingly, and that each of the extinct genera which preceded the appearance of man, present, for each organ, modifications which always tend towards greater perfection. The fins of the fishes of Devonian seas become the paddles of the Ichthyosauri and of the Plesiosauri; these, in their turn, become the membranous foot of the Pterodactyle, and, finally, the wing of the bird. Afterwards comes the articulated fore-foot of the terrestrial mammalia, which, after attaining remarkable perfection in the hand of the ape, becomes, finally, the arm and hand of man, an instrument of wonderful delicacy and power, belonging to an enlightened being gifted with the divine attribute of reason! Let us, then, dismiss any idea of monstrosity with regard to these antediluvian animals; let us learn, on the contrary, to recognise, with admiration, the divine proofs of design which they display, and in their organisation to see only the handiwork of the Creator.
Another strange inhabitant of the ancient world, the Pterodactylus (from πτερον, a wing, and δακτυλος, a finger), discovered in 1828, made Cuvier pronounce it to be incontestably the most extraordinary of all the extinct animals which had come under his consideration; and such as, if we saw them restored to life, would appear most strange and dissimilar to anything that now exists. In size and general form, and in the disposition and character of its wings, this fossil genus, according to Cuvier, somewhat resembled our modern bats and vampyres, but had its beak elongated like the bill of a woodcock, and armed with teeth like the snout of a crocodile; its vertebræ, ribs, pelvis, legs, and feet resembled those of a lizard; its three anterior fingers terminated in long hooked claws like that on the fore-finger of the bat; and over its body was a covering, neither composed of feathers as in the bird, nor of hair as in the bat, but probably a naked skin; in short, it was a monster resembling nothing that has ever been heard of upon earth, except the dragons of romance and heraldry. Moreover, it was probably noctivagous and insectivorous, and in both these points resembled the bat; but differed from it in having the most important bones in its body constructed after the manner of those of reptiles.
Fig. 105.—Pterodactylus crassirostris.
“Thus, like Milton’s fiend, all-qualified for all services and all elements, the creature was a fit companion for the kindred reptiles that swarmed in the seas, or crawled on the shores, of a turbulent planet:
“The Fiend,
O’er bog, or steep, through strait, rough, dense, or rare,
With head, hands, wings, or feet, pursues his way,
And sinks, or swims, or wades, or creeps, or flies.
Paradise Lost, Book II., line 947.
“With flocks of such-like creatures flying in the air, and shoals of Ichthyosauri and Plesiosauri swarming in the ocean, and gigantic Crocodiles and Tortoises crawling on the shores of primæval lakes and rivers—air, sea, and land must have been strangely tenanted in these early periods of our infant world.”[64]
The strange structure of this animal gave rise to most contradictory opinions from the earlier naturalists. One supposed it to be a bird, another a bat, and others a flying reptile. Cuvier was the first to detect the truth, and to prove, from its organisation, that the animal was a Saurian. “Behold,” he says, “an animal which in its osteology, from its teeth to the end of its claws, presents all the characters of the Saurians; nor can we doubt that their characteristics existed in its integuments and softer parts, in its scales, its circulation, its generative organs: it was at the same time provided with the means of flight; but when stationary it could not have made much use of its anterior extremities, even if it did not keep them always folded as birds fold their wings. It might, it is true, use its small anterior fingers to suspend itself from the branches of trees; but when at rest it must have been generally on its hind feet, like the birds again, and like them it must have carried its neck half-erect and curved backwards, so that its enormous head should not disturb its equilibrium.” This diversity of opinion need not very much surprise us after all, for, with the body and tail of an ordinary mammal, it had the form of a bird in its head and the length of its neck, of the bat in the structure and proportion of its wings, and of a reptile in the smallness of its head and in its beak, armed with at least sixty equal sharp-pointed teeth, differing little in form and size.
Fig. 106.—Pterodactylus brevirostris.
Dr. Buckland describes eight distinct species, varying in size from a snipe to a cormorant. Of these, P. crassirostris ([Fig. 105]) and P. brevirostris ([Fig. 106]), were both discovered in the Lias of Solenhofen. P. macronyx belongs to the Lias of Lyme Regis.
The Pterodactyle was, then, a reptile provided with wings somewhat resembling those of Bats, and formed, as in that Mammal, of a membrane which connected the body with the excessively elongated phalanges of the fourth finger, which served to expand the membrane that answered the purposes of a wing. The Pterodactyle of the Liassic period was, as we have seen, an animal of small size; the largest species in the older Lias beds did not exceed ten or twelve inches in length, or the size of a raven, while the later forms found fossil in the Greensand and Wealden beds must have measured more than sixteen feet between the tips of the expanded wings. On the other hand, its head was of enormous dimensions compared with the rest of the body. We cannot admit, therefore, that this animal could really fly, and, like a bird, beat the air. The membranous appendage which connected its long finger with its body was rather a parachute than a wing. It served to moderate the velocity of its descent when it dropped on its prey from a height. Essentially a climber, it could only raise itself by climbing up tall trees or rocks, after the manner of lizards, and throw itself thence to the ground, or upon the lower branches, by making use of its natural parachute.
The ordinary position of the Pterodactyle was probably upon its two hind feet, the lower extremities being adapted for standing and moving on the ground, after the manner of birds. Habitually, perhaps, it perched on trees; it could creep, or climb along rocks and cliffs, or suspend itself from trees, with the assistance of its claws and feet, after the manner of existing Bats. It is even probable, Dr. Buckland thought, that it had the power of swimming and diving, so common to reptiles, and possessed by the Vampyre Bat of the island of Bonin. It is believed that the smaller species lived upon insects, and the larger preyed upon fishes, upon which it could throw itself like the sea-gull.
The most startling feature in the organisation of this animal is the strange combination of two powerful wings attached to the body of a reptile. The imagination of the poets long dwelt on such a combination; the Dragon was a creation of their fancy, and it played a great part in fable and in pagan mythology. The Dragon, or flying reptile, breathing fire and poisoning the air with his fiery breath, had, according to the fable, disputed with man the possession of the earth. Gods and demigods claimed, among their most famous exploits, the glory of having vanquished this powerful and redoubtable monster.
Among the animals of our epoch, only a single reptile is found provided with wings, or digital appendages analogous to the membranous wings of the bats, and which can be compared to the Pterodactyle. This is called the Dragon, one of the Draconidæ, a family of Saurians, which has been described by Daudin, as distinguished by the first six ribs, instead of hooping round the abdomen, extending in nearly a straight line, and sustaining a prolongation of skin which forms a sort of wing analogous to that of the Pterodactyle. Independent of the four feet, this wing sustains the animal, like a parachute, as it leaps from branch to branch; but the creature has no power to beat the air with it as birds do when flying. This reptile lives in the forests of the hottest parts of Africa, and in some isles of the Indian Ocean, especially in Sumatra and Java. The only known species is that figured at page 238 ([Fig. 107]), which comes from the East Indies.
What a strange population was that which occupied the earth at this stage of its history, when the waters were filled with creatures so extraordinary as those whose history we have traced! Plesiosauri and Ichthyosauri filled the seas, upon the surface of which floated innumerable Ammonites in light skiffs, some of them as large as a good-sized cart-wheel, while gigantic Turtles and Crocodiles crawled on the banks of the rivers and lakes. Only one genus of Mammals had yet appeared, but no birds; nothing broke the silence of the air, if we except the breathing of the terrestrial reptiles and the flight of winged insects.
The earth cooled progressively up to the Jurassic period, the rains lost their continuity and abundance, and the pressure of the atmosphere sensibly diminished. All these circumstances favoured the appearance and the multiplication of innumerable species of animals, whose singular forms then showed themselves on the earth. We can scarcely imagine the prodigious quantity of Molluscs and Zoophytes whose remains lie buried in the Jurassic rocks, forming entire strata of immense thickness and extent.
Fig. 107.—Draco volans.
The same circumstances concurred to favour the production of plants. If the shores and seas of the period received such a terrible aspect from the formidable animals we have described, the vegetation which covered the land had also its peculiar character and appearance. Nothing that we know of in the existing scenery of the globe surpasses the rich vegetation which decorated the continents of the Jurassic period. A temperature still of great elevation, a humid atmosphere, and, we have no reason to doubt, a brilliant sun, promoted the growth of a luxuriant vegetation, such as some of the tropical islands, with their burning temperature and maritime climate, can only give us an idea of, while it recalls some of the Jurassic types of vegetation. The elegant Voltzias of the Trias had disappeared, but the Horse-tails (Equiseta) remained, whose slender and delicate stems rose erect in the air with their graceful panicles; the gigantic rushes also remained; and though the tree-ferns had lost their enormous dimensions of the Carboniferous age, they still preserved their fine and delicately-cut leaves.
Alongside these vegetable families, which passed upwards from the preceding age, an entire family—the Cycads ([Fig. 72], p. 168)—appear for the first time. They soon became numerous in genera, such as Zamites, Pterophyllum (Williamsonia), and Nilssonia. Among the species which characterise this age, we may cite the following, arranging them in families:—
| FERNS. | CYCADS. | CONIFERS. |
| Odontopteris cycadea. | Zamites distans. | Taxodites. |
| Taumopteris Munsteri. | Zamites heterophyllus. | Pinites. |
| Camptopteris crenata. | Zamites gracilis. | |
| Pterophyllum dubium. | ||
| Nilssonia contigua. | ||
| Nilssonia elegantissima. | ||
| Nilssonia Sternbergii. |
The Zamites seem to be forerunners of the Palms, which make their appearance in the following epoch; they were trees of elegant appearance, closely resembling the existing Zamias, which are trees of tropical America, and especially of the West India Islands; they were so numerous in species and in individuals that they seem to have formed, of themselves alone, one half of the forests during the period which engages our attention. The number of their fossilised species exceeds that of the living species. The trunk of the Zamites, simple and covered with scars left by the old leaves, supports a thick crown of leaves more than six feet in length, disposed in fan-like shape, arising from a common centre.
The Pterophyllum (Williamsonia), formed great trees, of considerable elevation, and covered with large pinnated leaves from top to bottom. Their leaves, thin and membranous, were furnished with leaflets truncated at the summit and traversed by fine nervures, not convergent, but abutting on the terminal truncated edge.
The Nilssonia, finally, were Cycadeaceæ resembling the Pterophyllum, but with thick and coriaceous leaves, and short leaflets contiguous to, and in part attached to the base; they were obtuse or nearly truncated at the summit, and would present nervures arched or confluent towards that summit.
Fig. 108.—Millepora alcicornis.
(Recent Coral.)
The essential characters of the vegetation during the Liassic sub-period were:—1. The great predominance of the Cycadeaceæ, thus continuing the development which commenced in the previous period, expanding into numerous genera belonging both to this family and that of the Zamites and Nilssonia; 2. The existence among the Ferns of many genera with reticulated veins or nervures, and under forms of little variation, which scarcely show themselves in the more ancient formations.
XVI.—Ideal Landscape of the Liassic Period.
On the opposite page ([Plate XVI.]) is an ideal landscape of the Liassic period; the trees and shrubs characteristic of the age are the elegant Pterophyllum, which appears in the extreme left of the picture, and the Zamites, which are recognisable by their thick and low trunk and fan-like tuft of foliage. The large horsetail, or Equisetum of this epoch, mingles with the great Tree-ferns and the Cypress, a Conifer allied to those of our own age. Among animals, we see the Pterodactyle specially represented. One of these reptiles is seen in a state of repose, resting on its hind feet. The other is represented, not flying, after the manner of a bird, but throwing itself from a rock in order to seize upon a winged insect, the dragon-fly (Libellula), the remains of which have been discovered, associated with the bones of the Pterodactyle, in the lithographic limestone of Pappenheim and Solenhofen.
Oolitic Sub-period.
This period is so named because many of the limestones entering into the composition of the formations it comprises, consist almost entirely of an aggregation of rounded concretionary grains resembling, in outward appearance, the roe or eggs of fishes, and each of which contains a nucleus of sand, around which concentric layers of calcareous matter have accumulated; whence the name, from ωον, egg, and λιθος, stone.
The Oolite series is usually subdivided into three sections, the Lower, Middle, and Upper Oolite. These rocks form in England a band some thirty miles broad, ranging across the country from Yorkshire, in the north-east, to Dorset, in the south-west, but with a great diversity of mineral character, which has led to a further subdivision of the series, founded on the existence of particular strata in the central and south-western counties:—
| Upper. | Middle. | Lower. |
| 1. Purbeck Beds. | 1. Coral Rag. | 1. Cornbrash. |
| 2. Portland Stone and Sand. | 2. Oxford Clay. | 2. Great Oolite & Forest Marble. |
| 3. Kimeridge Clay. | 3. Stonesfield Slate. | |
| 4. Fuller’s Earth. | ||
| 5. Inferior Oolite. |
The alternations of clay and masses of limestone in the Liassic and Oolite formations impart some marked features to the outline of the scenery both of France and England: forming broad valleys, separated from each other by ranges of limestone hills of more or less elevation. In France, the Jura mountains are composed of the latter; in England, the slopes of this formation are more gentle—the valleys are intersected by brooks, and clothed with a rich vegetation; it forms what is called a tame landscape, as compared with the wilder grandeur of the Primary rocks—it pleases more than it surprises. It yields materials also, more useful than some of the older formations, numerous quarries being met with which furnish excellent building-materials, especially around Bath, where the stone, when first quarried, is soft and easily worked, but becomes harder on exposure to the air.
The annexed section ([Fig. 109]) will give some idea of the configuration which the stratification assumes, such as may be observed in proceeding from the north-west to the south-east, from Caermarthenshire to the banks of the Ouse.
Fig. 109.—General view of the succession of British strata, with the elevations they reach above the level of the sea.
G, Granitic rocks; a, Gneiss; b, Mica-schist; c, Skiddaw or Cumbrian Slates; d, Snowdon rocks; e, Plynlymmon rocks; f, Silurian rocks; g, Old Red Sandstone; h, Carboniferous Limestone; i, Millstone Grit; k, Coal-measures; l, Magnesian Limestone; m, New Red Sandstone; n, Lias; o, Lower, Middle, and Upper Oolites; p, Greensand; q, Chalk; r, Tertiary strata.
Lower Oolite Fauna.
The most salient and characteristic feature of this age is, undoubtedly, the appearance of animals belonging to the class of Mammals. But the organisation, quite special, of the first of the Mammalia will certainly be a matter of astonishment to the reader, and must satisfy him that Nature proceeded in the creation of animals by successive steps, by transitions which, in an almost imperceptible manner, connect the beings of one age with others more complicated in their organisation. The first Mammals which appeared upon the earth, for example, did not enjoy all the organic attributes belonging to the more recent creations of the class. In the latter the young are brought forth living, and not from eggs, like Birds, Reptiles, and Fishes. But the former belonged to that order of animals quite special, and never numerous, the young of which are transferred in a half-developed state, from the body of the mother to an external pouch in which they remain until they become perfected; in short, to marsupial animals. The mother nurses her young during a certain time in a sort of pouch external to the body, in the neighbourhood of the abdomen, and provided with teats to which the young adhere. After a more or less prolonged sojourn in this pouch, the young animal, when sufficiently matured and strong enough to battle with the world, emerges from its warm retreat, and enters fully into life and light; the process being a sort of middle course between oviparous generation, in which the animals are hatched from eggs after exclusion from the mother’s body, like Birds; and viviparous, in which the animals are brought forth alive, as in the ordinary Mammals.
In standard works on natural history the animals under consideration are classed as mammiferous Didelphæ. They are brought forth in an imperfect state, and during their transitional condition are suckled in a pouch supported by bones called marsupial, which are attached by their extremities to the pelvis, and serve to support the marsupium, whence the animals provided with these provisions for bringing up their progeny are called Marsupial Mammals. The Opossum, Kangaroo, and Ornithorhynchus are existing representatives of this group.
Fig. 110.—Jaw of Thylacotherium Prevostii.
Fig. 111.—Jaw of Phascolotherium.
The name of Thylacotherium, or Amphitherium, or Phascolotherium, is given to the first of these marsupial Mammals which made their appearance, whose remains have been discovered in the Lower Oolite, and in one of its higher stages, namely, that called the Great Oolite. [Fig. 110] represents the jaw of the first of these animals, and [Fig. 111] the other—both of the natural size. These jaw-bones represent all that has been found belonging to these early marsupial animals; and Baron Cuvier and Professor Owen have both decided as to their origin. The first was found in the Stonesfield quarries. The Phascolotherium, also a Stonesfield fossil, was the ornament of Mr. Broderip’s collection. The animals which lived on the land during the Lower Oolitic period would be nearly the same with those of the Liassic. The insects were, perhaps, more numerous.
Fig. 112.—Ammonites Herveyii.
Fig. 113.—Terebratula digona.
The marine fauna included Reptiles, Fishes, Molluscs, and Zoophytes. Among the first were the Pterodactyle, and a great Saurian, the Teleosaurus, belonging to a family which made its appearance in this age, and which reappears in the following epoch. Among the Fishes, the Ganoids and Ophiopsis predominate. Among the Ammonites, Ammonites Humphriesianus, A. Herveyii ([Fig. 112]), A. Brongniarti, Nautilus lineatus, and many other representatives of the cephalopodous Mollusca. Among the Brachiopods are Terebratula digona ([Fig. 113]) and T. spinosa. Among the Gasteropoda the Pleurotomaria conoidea is remarkable from its elegant shape and markings, and very unlike any of the living Pleurotoma as represented by P. Babylonia ([Fig. 114]). Ostrea Marshii and Lima proboscidea, which belong to the Acephala, are fossil Mollusca of this epoch, to which also belong Entalophora cellarioides, Eschara Ranviliana, Bidiastopora cervicornis; elegant and characteristic molluscous Polyzoa. We give a representation of two living species, as exhibiting the form of these curious beings. ([Figs. 115] and [116].)
Fig. 114.—Pleurotoma Babylonia. (Recent.)
The Echinoderms and Polyps appear in great numbers in the deposits of the Lower Oolite: Apiocrinus elegans, Hyboclypus gibberulus, Dysaster Endesii represent the first; Montlivaltia caryophyllata, Anabacia orbulites, Cryptocœnia bacciformis, and Eunomia radiata represent the second.
Fig. 115.—Adeona folifera.
(Recent Polyzoa.)
Fig. 116.—Cellaria loriculata.
(Recent Polyzoa.)
This last and most remarkable species of Zoophyte presents itself in great masses many yards in circumference, and necessitates a long period of time for its production. This assemblage of little creatures living under the waters but only at a small depth beneath the surface, as Mr. Darwin has demonstrated, has nevertheless produced banks, or rather islets, of considerable extent, which at one time constituted veritable reefs rising out of the ocean. These reefs were principally constructed in the Jurassic period, and their extreme abundance is one of the characteristics of this geological age. The same phenomenon continues in our day, but by the agency of a new race of zoophytes, which carry on their operations, preparing a new continent, probably, in the atolls of the Pacific Ocean. (See [Fig. 108], p. 240.)
Fig. 117.
1, Otopteris dubia; 2, Otopteris obtusa; 3, Otopteris acuminata; 4, Otopteris cuneata.
The flora of the epoch was very rich. The Ferns continue to exist, but their size and bearing were sensibly inferior to what they had been in the preceding period. Among them Otopteris, distinguished for its simply pinnated leaves, whose leaflets are auriculate at the base: of the five species, 1, O. dubia; and 2, O. obtusa; and 3, O. acuminata; and 4, O. cuneata ([Fig. 117]), are from the Oolite. In addition to these we may name Coniopteris Murrayana, Pecopteris Desnoyersii, Pachypteris lanceolata, and Phlebopteris Phillipsii; and among the Lycopods, Lycopodus falcatus.
The vegetation of this epoch has a peculiar facies, from the presence of the family of the Pandanaceæ, or screw-pines, so remarkable for their aërial roots, and for the magnificent tuft of leaves which terminates their branches. Neither the leaves nor the roots of these plants have, however, been found in the fossil state, but we possess specimens of their large and spherical fruit, which leave no room for doubt as to the nature of the entire plant.
The Cycads were still represented by the Zamias, and by many species of Pterophyllum. The Conifers, that grand family of recent times, to which the pines, firs, and other trees of our northern forests belong, began to occupy an important part in the world’s vegetation from this epoch. The earliest Conifers belonged to the genera Thuites, Taxites, and Brachyphyllum. The Thuites were true Thuyas, evergreen trees of the present epoch, with compressed branches, small imbricated and serrated leaves, somewhat resembling those of the Cypress, but distinguished by many points of special organisation. The Taxites have been referred, with some doubts, to the Yews. Finally, the Brachyphyllum were trees which, according to the characteristics of their vegetation, seem to have approached nearly to two existing genera, the Arthotaxis of Tasmania, and the Weddringtonias of South Africa. The leaves of the Brachyphyllum are short and fleshy, with a large and rhomboidal base.
Lower Oolite Rocks.
The formation which represents the Lower Oolite, and which in England attains an average thickness of from 500 to 600 feet, forms a very complex system of stratification, which includes the two formations, Bajocien and Bathonian, adopted by M. D’Orbigny and his followers. The lowest beds of the Inferior Oolite occur in Normandy, in the Lower Alps (Basses-Alpes), in the neighbourhoods of Lyons and Neuchatel. They are remarkable near Bayeux for the variety and beauty of their fossils: the rocks are composed principally of limestones—yellowish-brown, or red, charged with hydrated oxide of iron, often oolitic, and reposing on calcareous sands. These deposits are surmounted by alternate layers of clay and marl, blue or yellow—the well-known Fuller’s Earth, which is so called from its use in the manufacture of woollen fabrics to extract the grease from the wool. The second series of the Lower Oolite, which attains a thickness of from 150 to 200 feet on the coast of Normandy, and is well developed in the neighbourhood of Caen and in the Jura, has been divided, in Britain, into four formations, in an ascending scale:—
1. The Great or Bath Oolite, which consists principally of a very characteristic, fine-grained, white, soft, and well-developed oolitic limestone, at Bath, and also at Caen in Normandy. At the base of the Great Oolite the Stonesfield beds occur, in which were found the bones of the marsupial Mammals, to which we have already alluded; and along with them bones of Reptiles, principally Pterodactyles, together with some finely-preserved fossil plants, fruits, and insects.
2. Bradford Clay, which is a bluish marl, containing many fine Encrinites (commonly called stone-lilies), but which had only a local existence, appearing to be almost entirely confined to this formation. “In this case, however,” says Lyell, “it appears that the solid upper surface of the ‘Great Oolite’ had supported, for a time, a thick submarine forest of these beautiful Zoophytes, until the clear and still water was invaded with a current charged with mud, which threw down the stone-lilies, and broke most of their stems short off near the point of attachment. The stumps still remain in their original position.”[65] See Fig. 1, [Plate XIX.], p. 261. (Bradford, or Pear, Encrinite.)
3. Forest Marble, which consists of an argillaceous shelly limestone, abounding in marine fossils, and sandy and quartzose marls, is quarried in the forest of Wichwood, in Wiltshire, and in the counties of Dorset, Wilts, and Somerset.
4. The Cornbrash (wheat-lands) consists of beds of rubbly cream-coloured limestone, which forms a soil particularly favourable to the cultivation of cereals; hence its name.[66]
The Lower Oolite ranges across the greater part of England, but “attains its maximum development near Cheltenham, where it can be subdivided, at least, into three parts. Passing north, the two lower divisions, each more or less characterised by its own fossils, disappear, and the Ragstone north-east of Cheltenham lies directly upon the Lias; apparently as conformably as if it formed its true and immediate successor, while at Dundry the equivalents of the upper freestones and ragstones (the lower beds being absent) lie directly on the exceedingly thin sands, which there overlie the Lower Lias. In Dorsetshire, on the coast, the series is again perfect, though thin. Near Chipping Norton, in Oxfordshire, the Inferior Oolite disappears altogether, and the Great Oolite, having first overlapped the Fullers’ Earth, passes across the Inferior Oolite, and in its turn seems to lie on the Upper Lias with a regularity as perfect as if no formation in the neighbourhood came between them. In Yorkshire the changed type of the Inferior Oolite, the prevalence of sands, land-plants, and beds of coal, occur in such a manner as to leave no doubt of the presence of terrestrial surfaces on which the plants grew, and all these phenomena lead to the conclusion that various and considerable oscillations of level took place in the British area during the deposition of the strata, both of the Inferior Oolite and of the formations which immediately succeed it.”[67]
Fig. 118.—Meandrina Dædalæa.
a, entire figure, reduced; b, portion, natural size.
(Recent Coral.)
The Inferior Oolite here alluded to is a thin bed of calcareous freestone, resting on, and sometimes replaced by yellow sand, which constitutes the passage-beds from the Liassic series. The Fullers’ Earth clay lies between the limestones of the Inferior and Great Oolite, at the base of which last lies the Stonesfield slate—a slightly oolitic, shelly limestone, or flaggy and fissile sandstone, some six feet thick, rich in organic remains, and ranging through Oxfordshire towards the north-east, into Northamptonshire and Yorkshire. At Colley Weston, in Northamptonshire, fossils of Pecopteris polypodioides are found. In the Great Oolite formation, near Bath, are many corals, among which the Eunomia radiata is very conspicuous. The fossil is not unlike the existing brain-coral of the tropical seas ([Fig. 118]). The work of this coral seems to have been suddenly stopped by “an invasion,” says Lyell, “of argillaceous matter, which probably put a sudden stop to the growth of Bradford Encrinites, and led to their preservation in marine strata.”[68] The Cornbrash is, in general, a cream-coloured limestone, about forty feet thick, in the south-west of England, and occupying a considerable area in Dorsetshire and North Wilts, as at Cricklade, Malmesbury, and Chippenham, in the latter county. Terebratula obovata is its characteristic shell, and Nucleolites clunicularis, Lima gibbosa, and Avicula echinata occur constantly in great numbers. Wherever it occurs the Cornbrash affords a rich and fertile soil, well adapted for the growth of wheat, while the Forest Marble, as a soil, is generally poor. The Cornbrash passes downwards into the Forest Marble, and sometimes, as at Bradford, near Bath, is replaced by clay. This clay, called the Bradford clay, is almost wholly confined to the county of Wilts. Terebratula decussata is one of the most characteristic fossils, but the most common is the Apiocrinites or pear-shaped encrinite, whose remains in this clay are so perfectly preserved that the most minute articulations are often found in their natural positions. [Plate XIX.], p. 261 (Fig. 1), represents an adult attached by a solid base to the rocky bottom on which it grew, whilst the smaller individuals show the Encrinite in its young state—one with arms expanded, the other with them closed. Ripple-marked slabs of fissile Forest Marble are used as a roofing-slate, and may be traced over a broad band of country in Wiltshire and Gloucestershire, separated from each other by thin seams of clay, in which the undulating ridges of the sand are preserved, and even the footmarks of small Crustaceans are still visible.
XVII.—Ideal Landscape of the Lower Oolite Period.
On the opposite page ([Plate XVII.]) is represented an ideal landscape of the period of the Lower Oolite. On the shore are types of the vegetation of the period. The Zamites, with large trunk covered with fan-like leaves, resembled in form and bearing the existing Zamias of tropical regions; a Pterophyllum, with its stem covered from base to summit with its finely-cut feathery leaves; Conifers closely resembling our Cypress, and an arborescent Fern. What distinguishes this sub-period from that of the Lias is a group of magnificent trees, Pandanus, remarkable for their aërial roots, their long leaves, and globular fruit.
Upon one of the trees of this group the artist has placed the Phascolotherium, not very unlike to our Opossum. It was amongst the first of the Mammalia which appeared in the ancient world. The artist has here enlarged the dimensions of the animal in order to show its form. Let the reader reduce it in imagination one-sixth, for it was not larger than an ordinary-sized cat.
A Crocodile and the fleshless skeleton of the Ichthyosaurus remind us that Reptiles still occupied an important place in the animal creation. A few Insects, especially Dragon-flies, fly about in the air. Ammonites float on the surface of the waves, and the terrible Plesiosaurus, like a gigantic swan, swims about in the sea. The circular reef of coral, the work of ancient Polyps, foreshadows the atolls of the great ocean, for it was during the Jurassic period that the Polyps of the ancient world were most active in the production of coral-reefs and islets.
Middle Oolite.
The terrestrial flora of this age was composed of Ferns, Cycads, and Conifers. The first represented by the Pachypteris microphylla, the second by Zamites Moreana. Brachyphyllum Moreanum and B. majus appear to have been the Conifers most characteristic of the period; fruits have also been found in the rocks of the period, which appear to belong to Palms, but this point is still obscure and doubtful.
Numerous vestiges of the fauna which animated the period are also revealed in the rocks of this age. Certain hemipterous insects appear on the earth for the first time, and the Bees among the Hymenoptera, Butterflies among the Lepidoptera, and Dragon-flies among the Neuroptera. In the bosom of the ocean, or upon its banks, roamed the Ichthyosaurus, Ceteosaurus, Pterodactylus crassirostris, and the Geosaurus; the latter being very imperfectly known.
The Ceteosaurus whose bones have been discovered in the upper beds of the Great Oolite at Enslow Rocks, at the Kirtlington Railway Station, north of Oxford, and some other places, was a species of Crocodile nearly resembling the modern Gavial or Crocodile of the Ganges. This huge whale-like reptile has been described by Professor John Phillips as unmatched in size and strength by any of the largest inhabitants of the Mesozoic land or sea—perhaps the largest animal that ever walked upon the earth. A full-grown Ceteosaurus must have been at least fifty feet long, ten feet high, and of a proportionate bulk. In its habits it was, probably, a marsh-loving or river-side animal, dwelling amidst filicene, cycadaceous, and coniferous shrubs and trees full of insects and small mammalia. The one small and imperfect tooth which has been found resembles that of Iguanodon more than of any other reptile; and it seems probable that the Ceteosaurus was nourished by vegetable food, which abounded in the vicinity of its haunts, and was not obliged to contend with the Megalosaurus for a scanty supply of more stimulating diet.[69]
Fig. 119.—Ramphorynchus restored. One-quarter natural size.
Another reptile allied to the Pterodactyle lived in this epoch—the Ramphorynchus, distinguished from the Pterodactyle by a long tail. The imprints which this curious animal has left upon the sandstone of the period are impressions of its feet and the linear furrow made by its tail. Like the Pterodactyle, the Ramphorynchus, which was about the size of a crow, could not precisely fly, but, aided by the wing (a sort of natural parachute formed by the membrane connecting the fingers with the body), it could throw itself from a height upon its prey. [Fig. 119] represents a restoration of this animal. The footprints in the soil are in imitation of those which accompany the remains of the Ramphorynchus in the Oolitic rocks, and they show the imprints of the anterior and posterior feet and also the marks made by the tail.
This tail was very long, far surpassing in length the rest of the vertebral column, and consisting of more than thirty vertebræ—which were at first short, but rapidly elongate, retain their length for a considerable distance, and then gradually diminish in size.
XVIII.—Ideal landscape of the Middle Oolitic Period.
Another genus of Reptiles appears in the Middle Oolite, of which we have had a glimpse in the Lias and Great Oolite of the preceding section. This is the Teleosaurus, which the recent investigations of M. E. Deslongchamps allow of re-construction. The Teleosaurus enables us to form a pretty exact idea of these Crocodiles of the ancient seas—these cuirassed Reptiles, which the German geologist Cotta describes as “the great barons of the kingdom of Neptune, armed to the teeth, and clothed in an impenetrable panoply; the true filibusters of the primitive seas.”
The Teleosaurus resembled the Gavials of India. The former inhabited the banks of rivers, perhaps the sea itself; they were longer, more slender, and more active than the living species; they were about thirty feet in length, of which the head may be from three to four feet, with their enormous jaws sometimes with an opening of six feet, through which they could engulf, in the depths of their enormous throat, animals of considerable size.
The Teleosaurus cadomensis is represented on the opposite page ([Plate XVIII.]), after the sketch of M. E. Deslongchamps, carrying from the sea in its mouth a Geoteuthis, a species of Calamary of the Oolitic epoch. This creature was coated with a cuirass both on the back and belly. In order to show this peculiarity, a living individual is represented on the shore, and a dead one is floating on its back in shallow water, leaving the ventral cuirass exposed.
Behind the Teleosaurus cadomensis in the engraving, another Saurian, the Hylæosaurus, is represented, which makes its appearance in the Cretaceous epoch. We have here adopted the restoration which has been so ably executed by Mr. Waterhouse Hawkins, at the Crystal Palace, Sydenham.
Fig. 120.—Eryon arctiformis.
Besides the numerous Fishes with which the Oolitic seas swarmed, they contained some Crustaceans, Cirripedes, and various genera of Mollusca and Zoophytes. Eryon arctiformis, represented in [Fig. 119], belongs to the class of Crustaceans, of which the spiny lobster is the type. Among the Mollusca were some Ammonites, Belemnites, and Oysters, of which many hundred species have been described. Of these we may mention Ammonites refractus, A. Jason and A. cordatus, Ostrea dilatata, Terebratula diphya, Diceras arietena, Belemnites hastatus, and B. Puzosianus. In some of the finely-laminated clays the Ammonites are very perfect, but somewhat compressed, with the outer lip or margin of the aperture entire ([Fig. 120]). Similar prolongations have been noticed in Belemnites found by Dr. Mantell in the Oxford Clay, near Chippenham.
Fig. 121.—Perfect Ammonite.
XIX.—Fig. 1.—Apiocrinites rotundus. Fig. 2.—Encrinus liliiformis.
Among the Echinoderms, Cidaris glandiferus, Apiocrinus Roissyanus, and A. rotundus, the graceful Saccocoma pectinata, Millericrinus nodotianus, Comatula costata, and Hemicidaris crenularis may be mentioned; Apiocrinites rotundus, figured in [Plate XIX.], is a reduced restoration: 1, being expanded; a, closed; 3, a cross section of the upper extremity of the pear-shaped head; 4, a vertical section showing the enlargement of the alimentary canal, with the hollow lenticular spaces which descend through the axis of the column, forming the joints, and giving elasticity and flexure to the whole stem, without risk of dislocation. A. rotundus is found at Bradford in Wiltshire, Abbotsbury in Dorset, at Soissons, and Rochelle. This species—known as the Bradford Pear-Encrinite—is only found in the strata mentioned.
The Corals of this epoch occur in great abundance. We have already remarked that these aggregations of Polyps are often met with at a great depth in the strata. These small calcareous structures have been formed in the ancient seas, and the same phenomenon is extending the terrestrial surface in our days in the seas of Oceania, where reefs and atolls of coral are rising by slow and imperceptible steps, but with no less certainty. Although their mode of production must always remain to some extent a mystery, the investigations of M. Lamaroux, Mr. Charles Darwin, and M. D’Orbigny have gone a long way towards explaining their operations; for the Zoophyte in action is an aggregation of these minute Polyps. Describing what he believes to be a sea-pen, a Zoophyte allied to Virgularia Patagonia, Mr. Darwin says: “It consists of a thin, straight, fleshy stem, with alternate rows of polypi on each side, and surrounding an elastic stony axis. The stem at one extremity is truncate, but at the other is terminated by a vermiform fleshy appendage. The stony axis which gives strength to the stem, may be traced at this extremity into a mere vessel filled with granular matter. At low water hundreds of these zoophytes might be seen, projecting like stubble, with the truncate end upwards, a few inches above the surface of the muddy sand. When touched or pulled, they drew themselves in suddenly, with force, so as nearly or quite to disappear. By this action, the highly-elastic axis must be bent at the lower extremity, where it is naturally slightly curved; and I imagine it is by this elasticity alone that the zoophyte is enabled to rise again through the mud. Each polypus, though closely united to its brethren, has a distinct mouth, body, and tentacula. Of these polypi, in a large specimen there must be many thousands. Yet we see that they act by one movement; that they have one central axis, connected with a system of obscure circulation.” Such is the brief account given by a very acute observer of these singular beings. They secrete the calcareous matter held in solution in the oceanic waters, and produce the wonderful structures we have now under consideration; and these calcareous banks have been in course of formation during many geological ages. They just reach the level of the waters, for the polyps perish as soon as they are so far above the surface that neither the waves nor the flow of the tides can reach them. In the Oolitic rocks these banks are frequently found from twelve to fifteen feet thick, and many leagues in length, and preserving, for the most part, the relative positions which they occupied in the sea while in course of formation.
The rocks which now represent the Middle Oolitic Period are usually divided into the Oxford Clay, the lower member of which is an arenaceous limestone, known as the Kellaways Rock, which in Wiltshire and other parts of the south-west of England attains a thickness of eight or ten feet, with the impressions of numerous Ammonites, and other shells. In Yorkshire, around Scarborough, it reaches the thickness of thirty feet; and forms well-developed beds of bluish-black marl in the department of Calvados, in France. It is the base of this clay which forms the soil (Argile de Dives) of the valley of the Auge, renowned for its rich pasturages and magnificent cattle. The same beds form the base of the oddly-shaped but fine rocks of La Manche, which are popularly known as the Vaches Noires (or black cows)—a locality celebrated, also, for its fine Ammonites transformed into pyrites.
The Oxford Clay constitutes the base of the hills in the neighbourhood of Oxford, forming a bed of clay sometimes more than 600 feet thick. It is found well-developed in France, at Trouville, in the department of the Calvados; and at Neuvisy, in the department of the Ardennes, where it attains a thickness of about 300 feet. It is a bluish, sometimes whitish limestone (often argillaceous), and bluish marl. The Gryphæa dilatata is the most common fossil in the Oxford Clay. The Coral Rag is so called from the fact that the limestone of which it is chiefly composed consists, in part, of an aggregation of considerable masses of petrified Corals; not unlike those now existing in the Pacific Ocean, supposing them to be covered up for ages and fossilised. This coral stratum extends through the hills of Berkshire and North Wilts, and it occurs again near Scarborough. In the counties of Dorset, Bedford, Buckingham, and Cambridge, and some other parts of England, the limestone of the Coral Rag disappears and is replaced by clay—in which case the Oxford Clay is overlaid directly by the Kimeridge Clay. In France it is found in the departments of the Meuse, of the Yonne, of the Ain, of the Charente Inférieure. In the Alps the Diceras limestone is regarded, by most geologists, as coeval with the English Coral Rag.
Upper Oolite.
Some marsupial Mammals have left their remains in the Upper Oolite as in the Lower. They belong to the genus Sphalacotherium. Besides the Plesiosauri and Teleosauri, there still lived in the maritime regions a Crocodile, the Macrorhynchus; and the monstrous Pœcilopleuron, with sharp cutting teeth, one of the most formidable animals of this epoch; the Hylæosaurus, Cetiosaurus, Stenosaurus, and Streptospondylus, and among the Turtles, the Emys and Platemys. As in the Lower Oolite, so also in the Upper, Insects similar to those by which we are surrounded, pursued their flight in the meadows and hovered over the surface of the water. Of these, however, too little is known for us to give any very precise indication on the subject of their special organisation.
Fig. 122.—Bird of Solenhofen (Archæopteryx).
The most remarkable fact relating to this period is the appearance of the first bird. Hitherto the Mammals, and of these only imperfectly-organised species, namely, the Marsupials, have alone appeared. It is interesting to witness birds appearing immediately after. In the quarries of lithographic stone at Solenhofen, the remains of a bird, with feet and feathers, have been found, but without the head. These curious remains are represented in [Fig. 122], in the position in which they were discovered. The bird is usually designated the Bird of Solenhofen.
Fig. 123.
Shell of Physa fontinalis.
The Oolitic seas of this series contained Fishes belonging to the genera Asteracanthus, Strephodes, Lepidotus, and Microdon. The Cephalopodous Mollusca were not numerous, the predominating genera belonging to the Lamellibranchs and to the Gasteropods, which lived on the shore. The reef-making Madrepores or Corals were more numerous. A few Zoophytes in the fossil state testify to the existence of these extraordinary animals. The fossils characteristic of the fauna of the period include Ammonites decipiens and A. giganteus, Natica elegans and hemispherica, Ostrea deltoidea and O. virgula, Trigonia gibbosa, Pholadomya multicostata and P. acuticostata, Terebratula subsella, and Hemicidaris Purbeckensis. Some Fishes, Turtles, Paludina, Physa ([Fig. 123]), Unio, Planorbis ([Fig. 201]), and the little crustacean bivalves, the Cypris, constituted the fresh-water fauna of the period.
The terrestrial flora of the period consisted of Ferns, Cycadeaceæ, and Conifers; in the ponds and swamps some Zosteræ. The Zosteræ are monocotyledonous plants of the family of the Naïdaceæ, which grow in the sandy mud of maritime regions, forming there, with their long, narrow, and ribbon-like leaves, vast prairies of the most beautiful green. At low tides these masses of verdure appear somewhat exposed. They would form a retreat for a great number of marine animals, and afford nourishment to others.
XX.—Ideal Landscape of the Upper Oolitic Period.
On the opposite page an ideal landscape of the period ([Plate XX.]) represents some of the features of the Upper Oolite, especially the vegetation of the Jurassic period. The Sphenophyllum, among the Tree-ferns, is predominant in this vegetation; some Pandanas, a few Zamites, and many Conifers, but we perceive no Palms. A coral islet rises out of the sea, having somewhat of the form of the atolls of Oceania, indicating the importance these formations assumed in the Jurassic period. The animals represented are the Crocodileimus of Jourdan, the Ramphorynchus, with the imprints which characterise its footsteps, and some of the invertebrated animals of the period, as the Asteria, Comatula, Hemicidaris, Pteroceras. Aloft in the air floats the bird of Solenhofen, the Archæopteryx, which has been re-constructed from the skeleton, with the exception of the head, which remains undiscovered.
The rocks which represent the Upper Oolite are usually divided into two series: 1. The Purbeck Beds; 2. The Portland Stone and Sand; and 3. The Kimeridge Clay.
The Kimeridge Clay, which in many respects bears a remarkable resemblance to the Oxford Clay, is composed of blue or yellowish argillaceous beds, which occur in the state of clay and shale (containing locally beds of bituminous schist, sometimes forming a sort of earthy impure coal), and several hundred feet in thickness. These beds are well developed at Kimeridge, in Dorsetshire, whence the clay takes its name. In some parts of Wiltshire the beds of bituminous matter have a shaly appearance, but there is an absence of the impressions of plants which usually accompany the bitumen, derived from the decomposition of plants. These rocks, with their characteristic fossils, Cardium striatulum and Ostrea deltoidea, are found throughout England: in France, at Tonnerre, Dept. Yonne; at Havre; at Honfleur; at Mauvage; in the department of the Meuse it is so rich in shells of Ostrea deltoidea and O. virgula, that, “near Clermont in Argonne, a few leagues from St. Menehould,” says Lyell,[70] “where these indurated marls crop out from beneath the Gault, I have seen them (Gryphæa virgula) on decomposing leave the surface of every ploughed field literally strewed over with this fossil oyster.”
The second section of this series consists of the oolitic limestone of Portland, which is quarried in the Isle of Portland and in the cliffs of the Isle of Purbeck in Dorsetshire, and also at Chilmark in the Vale of Wardour, in Wiltshire. In France, the Portland beds are found near Boulogne, at Cirey-le-Château, Auxerre, and Gray (Haute Saône).
The Isle, or rather peninsula of Portland,[71] off the Dorsetshire coast, rises considerably above the sea-level, presenting on the side of the port a bold line of cliffs, connected with the mainland by the Chesil bank,[72] an extraordinary formation, consisting of a beach of shingle and pebbles loosely piled on the blue Kimeridge clay, and stretching ten miles westward along the coast. The quarries are chiefly situated in the northerly part of the island. The story told of this remarkable island is an epitome of the revolutions the surface of the earth has undergone. The slaty Purbeck beds which overlie the Portland stone are of a dark-yellowish colour; they are burnt in the neighbourhood for lime. The next bed is of a whiter and more lively colour. It is the stone of which the portico of St. Paul’s and many of the houses of London, built in Queen Anne’s time, were constructed. The building-stone contains fossils exclusively marine. Upon this stratum rests a bed of limestone formed in lacustrine waters. Finally, upon this bed rests another deposit of a substance which consists of very well-preserved vegetable earth or humus, quite analogous to our vegetable soil, of the thickness of from fifteen to eighteen inches, and of a blackish colour; it contains a strong proportion of carbonaceous earth; it abounds in the silicified remains of Conifers and other plants, analogous to the Zamia and Cycas—this soil is known as the “dirt-bed.” The trunks of great numbers of silicified trees and tropical plants are found here erect, their roots fixed in the soil, and of species differing from any of our forest trees. “The ruins of a forest upon the ruins of a sea,” says Esquiros, “the trunks of these trees were petrified while still growing. The region now occupied by the narrow channel and its environs had been at first a sea, in whose bed the Oolitic deposits which now form the Portland stone accumulated: the bed of the sea gradually rose and emerged from the waves. Upon the land thus rescued from the deep, plants began to grow; they now constitute with their ruins the soil of the dirt-bed. This soil, with its forest of trees, was afterwards plunged again into the waters—not the bitter waters of the ocean, but in the fresh waters of a lake formed at the mouth of some great river.”
Time passed on, however; a calcareous sediment brought from the interior by the waters, formed a layer of mud over the dirt-bed; finally, the whole region was covered by a succession of calcareous deposits, until the day when the Isle of Portland was again revealed to light. “From the facts observed,” says Lyell, “we may infer:—1. That those beds of the Upper Oolite, called the Portland, which are full of marine shells, were overspread with fluviatile mud, which became dry land, and covered with a forest, throughout a portion of space now occupied by the south of England, the climate being such as to admit of the growth of the Zamia and Cycas. 2. This land at length sank down and was submerged with its forest beneath a body of fresh water from which sediment was thrown down enveloping fluviatile shells. 3. The regular and uniform preservation of this thin bed of black earth over a distance of many miles, shows that the change from dry land to the state of a fresh-water lake, or estuary, was not accompanied by any violent denudation or rush of water, since the loose black earth, together with the trees which lay prostrate on its surface, must inevitably have been swept away had any such violent catastrophe taken place.”[73]
Fig. 124.—Geological humus. a, Fresh-water calcareous slate (Purbeck); b, Dirt-bed, with roots and stems of trees; c, Fresh-water beds; d, Portland Stone.
The soil known as the dirt-bed is nearly horizontal in the Isle of Portland; but we discover it again not far from there in the sea-cliffs of the Isle of Purbeck, having an inclination of 45°, where the trunks continue perfectly parallel among themselves, affording a fine example of a change in the position of beds originally horizontal. [Fig. 124] represents this species of geological humus. “Each dirt-bed” says Sir Charles Lyell, “may, no doubt, be the memorial of many thousand years or centuries, because we find that two or three feet of vegetable soil is the only monument which many a tropical forest has left of its existence ever since the ground on which it now stands was first covered with its shade.”[74]
This bed of vegetable soil is, then, near the summit of that long and complicated series of beds which constitute the Jurassic period; these ruins, still vegetable, remind us forcibly of the coal-beds, for they are nothing else than a less advanced state of that kind of vegetable fossilisation which was perfected on such an immense scale, and during an infinite length of time in the coal period.
The Purbeck beds, which are sometimes subdivided into Lower, Middle, and Upper, are mostly fresh-water formations, intimately connected with the Upper Portland beds. But there they begin and end, being scarcely recognisable except in Dorsetshire, in the sea-cliffs of which they were first studied. They are finely exposed in Durdlestone Bay, near Swanage, and at Lulworth Cove, on the same coast. The lower beds consist of a purely fresh-water marl, eighty feet thick, containing shells of Cypris, Limnæa, and some Serpulæ in a bed of marl of brackish-water origin, and some Cypris-bearing shales, strangely broken up at the west end of the Isle of Purbeck.
The Middle series consists of twelve feet of marine strata known as the “cinder-beds,” formed of a vast accumulation of Ostrea distorta, resting on fresh-water strata full of Cypris fasciculata, Planorbis, and Limnæa, by which this strata has been identified as far inland as the vale of Wardour in Wiltshire. Above the cinder-beds are shales and limestones, partly of fresh-water and partly of brackish-water origin, in which are Fishes, many species of Lepidotus, and the crocodilian reptile, Macrorhynchus. On this rests a purely marine deposit, with Pecten, Avicula, &c. Above, again, are brackish beds with Cyrena, overlying which is thirty feet of fresh-water limestone, with Fishes, Turtles, and Cyprides.
The upper beds are purely fresh-water strata, about fifty feet thick, containing Paludina, Physa, Limnæa, all very abundant. In these beds the Purbeck marble, formerly much used in the ornamental architecture of the old English cathedrals, was formerly quarried. (See [Note], page 274.)
A few words may be added, in explanation of the term oolite, applied to this sub-period of the Jurassic formation. In a great number of rocks of this series the elements are neither crystalline nor amorphous—they are, as we have already said, oolitic; that is to say, the mass has the form of the roe of certain fishes. The question naturally enough arises, Whence this singular oolitic structure assumed by the components of certain rocks? It is asserted that the grinding action of the sea acting upon the precipitated limestone produces rounded forms analogous to grains of sand. This hypothesis may be well founded in some cases. The marine sediments which are deposited in some of the warm bays of Teneriffe are found to take the spheroidal granulated form of the oolite. But these local facts cannot be made to apply to the whole extent of the oolitic formations. We must, therefore, look further for an explanation of the phenomena.
It is admitted that if the cascades of Tivoli, for example, can give birth to the oolitic grains, the same thing happens in the quietest basins, that in stalactite-caverns oolitic grains develop themselves, which afterwards, becoming cemented together from the continued, but very slow, affluence of the calcareous waters, give rise to certain kinds of oolitic rocks.
On the other hand, it is known that nodules, more or less large, develop themselves in marls in consequence of the concentration of the calcareous elements, without the possibility of any wearing action of water. Now, as there exists every gradation of size between the smallest oolitic grains and the largest concretions, it is reasonable to suppose that the oolites are equally the product of concentration.
Finally, from research to research, it is found that perfectly constituted oolites—that is to say, concentric layers, as in the Jurassic limestone—develop themselves in vegetable earth in places where the effects of water in motion is not more admissible than in the preceding instances.
Thus we arrive at the conclusion, that if Nature sometimes forms crystals with perfect terminations in magmas in the course of solidification, she gives rise also to spheroidal forms surrounding various centres, which sometimes originate spontaneously, and in other cases are accumulated round the débris of fossils, or even mere grains of sand. Nevertheless, all mineral substances are not alike calculated to produce oolitic rocks; putting aside some particular cases, this property is confined to limestone and oxide of iron.
With regard to the distribution of the Jurassic formation on the terrestrial globe, it may be stated that the Cotteswold Hills in England, and in France the Jura mountains, are almost entirely composed of these rocks, the several series of beds being all represented in them—this circumstance, in fact, induced Von Humboldt to name the formation after this latter range. The Upper Lias also exists in the Pyrenees and in the Alps; in Spain; in many parts of Northern Italy; in Russia, especially in the government of Moscow, and in the Crimea; but it is in Germany where it occupies the most important place. A thin bed of oolitic limestone presents, at Solenhofen in Bavaria, a geological repository of great celebrity, containing fossil Plants, Fishes, Insects, Crustaceans, with some Pterodactyles, admirably preserved; it yielded also some of the earliest of the feathered race. The fine quarries of lithographic stone at Pappenheim, so celebrated all over Europe, belong to the Jurassic formation.
It has recently been announced that these rocks have been found in India; they contribute largely to the formation of the main mass of the Himalayas, and to the chain of the Andes in South America; finally, from recent investigations, they seem to be present in New Zealand.
In England the Lias constitutes a well-defined belt about thirty miles broad, extending from Dorsetshire, in the south, to Yorkshire, in the north, formed of alternate beds of clay, shales, and limestone (with layers of jet), on the coast near Whitby. It is rich, as we have seen, in ancient life, and that in the strongest forms imaginable. From the unequal hardness of the rocks it comprises, it stands out boldly in some of the minor ranges of hills, adding greatly to the picturesque beauty of the scenery in the centre of the country. In Scotland the formation occupies a very limited space.
A map of the country at the close of the Jurassic period would probably show double the extent of dry land in the British Islands, compared with what it displayed as an island in the primordial ocean; but Devon and Cornwall had long risen from the sea, and it is probable that the Jurassic beds of Dorsetshire and France were connected by a tongue of land running from Cherbourg to the Liassic beds of Dorsetshire, and that Boulogne, still an island, was similarly connected with the Weald.
Fig. 125.—Crioceras Duvallii, Sowerby.
A non-involuted Ammonite.
(Neocomian.)
Note.—Sections of the Purbeck strata of Dorsetshire have been constructed by Mr. Bristow, from actual measurement, in the several localities in the Isle of Purbeck, where they are most clearly and instructively displayed.
These sections, published by the Geological Survey, show in detail the beds in their regular and natural order of succession, with the thickness, mineral character, and contents, as well as the fossils, of each separate bed.