OLD RED SANDSTONE AND DEVONIAN PERIOD.
Another great period in the Earth’s history opens on us—the Devonian or “Old Red Sandstone,” so called, because the formation is very clearly displayed over a great extent of country in the county of Devon. The name was first proposed by Murchison and Sedgwick, in 1837, for these strata, which had previously been referred to the “transition” or Silurian series.
The circumstances which marked the passage of the uppermost Silurian rocks into Old Red Sandstone seem to have been:—First, a shallowing of the sea, followed by a gradual alteration in the physical geography of the district, so that the area became changed into a series of mingled fresh and brackish lagoons, which, finally, by continued terrestrial changes, were converted into a great fresh-water lake; or, if we take the whole of Britain and lands beyond, into a series of lakes.[40]
Mr. Godwin Austen has, also, stated his opinion that the Old Red Sandstone, as distinct from the Devonian rocks, was of lacustrine origin.
The absence of marine shells helps to this conclusion, and the nearest living analogues of some of the fishes are found in the fresh water of Africa and North America. Even the occurrence in the Devonian rocks of Devonshire and Russia of some Old Red Sandstone fishes along with marine shells, merely proves that some of them were fitted to live in either fresh or salt water, like various existing fishes. At the present day animals that are commonly supposed to be essentially marine, are occasionally found inhabiting fresh water, as is the case in some of the lakes of Sweden, where it is said marine crustacea are found. Mr. Alexander Murray also states that in the inland fresh-water lakes of Newfoundland seals are common, living there without even visiting the sea. And the same is the case in Lake Baikal, in Central Asia.
The red colour of the Old Red Sandstone of England and Scotland, and the total absence of fossils, except in the very uppermost beds, are considered by Professor Ramsay to indicate that the strata were deposited in inland waters. These fossils are terrestrial ferns, Adiantites (Pecopteris) Hibernicus, and a fresh-water shell, Anodon Jukesii, together with the fish Glyptolepis.[41]
The rocks deposited during the Devonian period exhibit some species of animals and plants of a much more complex organisation than those which had previously made their appearance. We have seen, during the Silurian epoch, organisms appearing of very simple type; namely, zoophytes, articulated and molluscous animals, with algæ and lycopods, among plants. We shall see, as the globe grows older, that organisation becomes more complex. Vertebrated animals, represented by numerous Fishes, succeed Zoophytes, Trilobites, and Molluscs. Soon afterwards Reptiles appear, then Birds and Mammals; until the time comes when man, His supreme and last work, issues from the hands of the Creator, to be king of all the earth—man, who has for the sign of his superiority, intelligence—that celestial gift, the emanation from God.
Vast inland seas, or lakes covered with a few islets, form the ideal of the Old Red Sandstone period. Upon the rocks of these islets the mollusca and articulata of the period exhibit themselves, as represented on the opposite page ([Plate IX.]). Stranded on the shore we see armour-coated Fishes of strange forms. A group of plants (Asterophyllites) covers one of the islets, associated with plants nearly herbaceous, resembling mosses, though the true mosses did not appear till a much later period. Encrinites and Lituites occupy the rocks in the foreground of the left hand.
The vegetation is still simple in its development, for forest-trees seem altogether wanting. The Asterophyllites, with tall and slender stems, rise singly to a considerable height. Cryptogams, of which our mushrooms convey some idea, would form the chief part of this primitive vegetation; but in consequence of the softness of their tissues, their want of consistence, and the absence of much woody fibre, these earlier plants have come down to us only in a fragmentary state.
IX.—Ideal Landscape of the Devonian Period.
The plants belonging to the Devonian period differ much from the vegetation of the present day. They resembled both mosses and lycopods, which are flowerless cryptogamic plants of a low organisation. The Lycopods are herbaceous plants, playing only a secondary part in the vegetation of the globe; but in the earlier ages of organic creation they were the predominant forms in the vegetable kingdom, both as to individual size and the number and variety of their species.
Fig. 30.—Plants of the Devonian Epoch. 1. Algæ. 2. Zostera. 3. Psilophyton, natural size.
In the woodcut ([Fig. 30]) we have represented three species of aquatic plants belonging to the Devonian period; they are—1, Fucoids (or Algæ); 2, Zostera; 3, Psilophyton. The Fucoid closely resembles its modern ally; but with the first indications of terrestrial vegetation we pass from the Thallogens, to which the Algæ belong (plants of simple organisation, without flower or stem), to the Acrogens, which throw out their leaves and branches at the extremity, and bear in the axils of their leaves minute circular cases, which form the receptacles of their spore-like seeds. “If we stand,” says Hugh Miller, “on the outer edge of one of those iron-bound shores of the Western Highlands, where rock and skerries are crowned with sea-weeds; the long cylindrical lines of chorda-filum, many feet in length, lying aslant in the tideway; long shaggy bunches of Fucus serratus and F. nodosus drooping from the sides of the rock; the flat ledges bristling with the stiff cartilaginous many-cleft fronds of at least two species of Chondrus; now, in the thickly-spread Fucoids of this Highland scene we have a not very improbable representation of the Thallogenous vegetation. If we add to this rocky tract, so rich in Fucoids, a submarine meadow of pale shelly sand, covered by a deep-green swathe of Zosteræ, with jointed root and slim flowers, unfurnished with petals, it would be more representative still.”
Let us now take a glance at the animals belonging to this period.
The class of Fishes seem to have held the first rank and importance in the Old Red Sandstone fauna; but their structure was very different from that of existing fishes: they were provided with a sort of cuirass, and from the nature of the scales were called Ganoid fishes. Numerous fragments of these curious fishes are now found in geological collections; they are of strange forms, some being completely covered with a cuirass of many pieces, and others furnished with wing-like pectoral fins, as in Pterichthys.
Let any one picture to himself the surprise he would feel should he, on taking his first lesson in geology, and on first breaking a stone—a pebble, for instance, exhibiting every external sign of a water-worn surface—find, to appropriate Archdeacon Paley’s illustration, a watch, or any other delicate piece of mechanism, in its centre. Now, this, thirty years ago, is exactly the kind of surprise that Hugh Miller experienced in the sandstone quarry opened in a lofty wall of cliff overhanging the northern shore of the Moray Frith. He had picked up a nodular mass of blue Lias-limestone, which he laid open by a stroke of the hammer, when, behold! an exquisitely shaped Ammonite was displayed before him. It is not surprising that henceforth the half-mason, half-sailor, and poet, became a geologist. He sought for information, and found it; he found that the rocks among which he laboured swarmed with the relics of a former age. He pursued his investigations, and found, while working in this zone of strata all around the coast, that a certain class of fossils abounded; but that in a higher zone these familiar forms disappeared, and others made their appearance.
He read and learned that in other lands—lands of more recent formation—strange forms of animal life had been discovered; forms which in their turn had disappeared, to be succeeded by others, more in accordance with beings now living. He came to know that he was surrounded, in his native mountains, by the sedimentary deposits of other ages; he became alive to the fact that these grand mountain ranges had been built up grain by grain in the bed of the ocean, and the mountains had been subsequently raised to their present level by the upheaval of one part of its bed, or by the subsidence of another. The young geologist now ceased to wonder that each bed, or series of beds, should contain in its bosom records of its own epoch; it seemed to him as if it had been the object of the Creator to furnish the inquirer with records of His wisdom and power, which could not be misinterpreted.
Fig. 31.—Fishes of the Devonian Epoch. 1. Coccosteus, one-third natural size. 2. Pterichthys, one-fourth natural size. 3. Cephalaspis, one-fourth natural size.
Among the Fishes of Old Red Sandstone, the Coccosteus ([Fig. 31], No. 1) was only partially cased in a defensive armour; the upper part of the body down to the fins was defended by scales. Pterichthys (No. 2), a strange form, with a very small head, furnished with two powerful paddles, or arms, like wings, and a mouth placed far behind the nose, was entirely covered with scales. The Cephalaspis (No. 3), which has a considerable outward resemblance to some fishes of the present time, was nevertheless mail-clad, only on the anterior part of the body.
Fig. 32.—Fishes of the Devonian epoch. 1. Acanthodes. 2. Climatius. 3. Diplacanthus.
Other fishes were provided with no such cuirass, properly so called, but were protected by strong resisting scales, enveloping the whole body. Such were the Acanthodes (1), the Climatius (2), and the Diplacanthus (3), represented in [Fig. 32].
Among the organic beings of the Devonian rocks we find worm-like animals, such as the Annelides, protected by an external shell, and which at the present day are probably represented by the Serpulæ. Among Crustaceans the Trilobites are still somewhat numerous, especially in the middle rocks of the period. We also find there many different groups of Mollusca, of which the Brachiopoda form more than one-half. We may say of this period that it is the reign of Brachiopoda; in it they assumed extraordinary forms, and the number of their species was very great. Among the most curious we may instance the enormous Stringocephalus Burtini, Davidsonia Verneuilli, Uncites gryphus, and Calceola Sandalina, shells of singular and fantastic shape, differing entirely from all known forms. Amongst the most characteristic of these Mollusca, Atrypa reticularis ([Fig. 33]) holds the first rank, with Spirifera concentrica, Leptæna Murchisoni, and Productus subaculeatus. Among the Cephalopoda we have Clymenia Sedgwickii ([Fig. 34]), including the Goniatites, illustrating the Ammonites, which so distinctly characterise the Secondary epoch, but which were only foreshadowed in the Devonian period.
Fig. 33.—Atrypa reticularis.
Among the Radiata of this epoch, the order Crinoidea are abundantly represented. We give as an example Cupressocrinus crassus ([Fig. 35]). The Encrinites, under which name the whole of these animals are sometimes included, lived attached to rocky places and in deep water, as they now do in the Caribbean sea.
Fig. 34.—Clymenia Sedgwickii.
The Encrinites, as we have seen, were represented during the Silurian period in a simple genus, Hemicosmites, but they greatly increased in numbers in the seas of the Devonian period. They diminish in numbers, as we retire from that geological age; until those forms, which were so numerous and varied in the earliest seas, are now only represented by two genera.
The Old Red Sandstone rocks are composed of schists, sandstone, and limestones. The line of demarcation between the Silurian rocks and those which succeed them may be followed, in many places, by the eye; but, on a closer examination, the exact limits of the two systems become more difficult to fix. The beds of the one system pass into the other by a gradual passage, for Nature rarely admits of violent contrasts, and shows few sudden transitions. By-and-by, however, the change becomes very decided, and the contrast between the dark grey masses at the base and the superincumbent yellow and red rocks become sufficiently striking. In fact, the uppermost beds of the Silurian rocks are the passage-beds of the overlying system, consisting of flagstones, occasionally reddish, and called in some districts “tile-stones.” Over these lie the Old Red Sandstone conglomerate, the Caithness flags, and the great superincumbent mass which forms the upper portion of the system. Though less abrupt than the eruptive and Silurian mountains, the Old Red Sandstone scenery is, nevertheless, distinguished by its imposing outline, assuming bold and lofty escarpments in the Vans of Brecon, in Grongar Hill, near Caermarthen, and in the Black Mountain of Monmouthshire, in the centre of a landscape which, wood, rock, and river combine to render perfect. But it is in the north of Scotland where this rock assumes its grandest aspect, wrapping its mantle round the loftiest mountains, and rising out of the sea in rugged and fantastic masses, as far north as the Orkneys. In Devon and Cornwall, where the rocks are of a calcareous, and sometimes schistose or slaty character, they are sufficiently extensive to have given a name to the series, which is recognised all over the world.
Fig. 35.—Cupressocrinus crassus.
In Herefordshire, Worcestershire, Shropshire, Gloucestershire, and South Wales, the Old Red Sandstone is largely developed, and sometimes attains the thickness of from 8,000 to 10,000 feet, divided into: 1. Conglomerate; 2. Brown stone, with Eurypterus; 3. Marl and cornstones, with irregular courses of concrete limestone, in which are spines of Fishes and remains of Cephalaspis and Pteraspis; 4. Thin olive-coloured shales and sandstone, intercalated with beds of red marl, containing Cephalaspis and Auchenaspis. In Scotland, south of the Grampians, a yellow sandstone occupies the base of the system; conglomerate, red shales, sandstone and cornstones, containing Holoptychius and Cephalaspis, and the Arbroath paving-stone, containing what Agassiz recognised as a huge Crustacean.
Fig. 36.—Trinucleus Lloydii. (Llandeilo Flags.)
Some of the phenomena connected with the older rocks of Devonshire are difficult to unravel. The Devonian, it is now understood, is the equivalent, in another area, of the Old Red Sandstone, and in Cornwall and Devonshire lie directly on the Silurian strata, while elsewhere the fossils of the Upper Silurian are almost identical with those in the Devonian beds. The late Professor Jukes, with some other geologists, was of opinion that the Devonian rocks of Devonshire only represented the Old Red Sandstone of Scotland and South Wales in part; the Upper Devonian rocks lying between the acknowledged Old Red Sandstone and the Culm-measures being the representatives of the lower carboniferous rocks of Ireland.
Mr. Etheridge, on the other hand, in an elaborate memoir upon the same subject, has endeavoured to prove that the Devonian and Old Red Sandstone, though contemporaneous in point of time, were deposited in different areas and under widely different conditions—the one strictly marine, the other altogether fresh-water—or, perhaps, partly fresh-water and partly estuarine. This supposition is strongly supported by his researches into the mollusca of the Devonian system, and also by the fish-remains of the Devonian and Old Red Sandstone of Scotland and the West of England and Wales.[42] The difficulty of drawing a sharply-defined line of demarcation between different systems is sufficient to dispel the idea which has sometimes been entertained that special faunæ were created and annihilated in the mass at the close of each epoch. There was no close: each epoch disappears or merges into that which succeeds it, and with it the animals belonging to it, much as we have seen them disappear from our own fauna almost within recent times.