THE ELECTRIC ELEVATOR

At the time the Eiffel Tower elevators were under consideration, water under pressure was, from a practical standpoint, the only agent capable of fulfilling the power and control requirements of this particularly severe service. Steam, as previously mentioned, had already been found wanting in several respects. Electricity, on the other hand, seemed to hold promise for almost every field of human endeavor. By 1888 the electric motor had behind it a 10- or 15-year history of active development. Frank J. Sprague had already placed in successful operation a sizable electric trolley-car system, and was manufacturing motors of up to 20 horsepower in commercial quantity. Lighting generators were being produced in sizes far greater. There were, nevertheless, many obstacles preventing the translation of this progress into machinery capable of hauling large groups of people a vertical distance of 1,000 feet with unquestionable dependability.

The first application of electricity to elevator propulsion was an experiment of the distinguished German electrician Werner von Siemens, who, in 1880, constructed a car that successfully climbed a rack by means of a motor and worm gearing beneath its deck ([figs. 17], [18])—again, the characteristic European distrust of cable suspension. However, the effect of this success on subsequent development was negligible. Significant use of electricity in this field occurred somewhat later, and in a manner parallel to that by which steam was first applied to the elevator—the driving of mechanical (belt driven) elevator machines by individual motors. Slightly later came another application of the “conversion” type. This was the simple substitution of electrically driven pumps ([fig. 21]) for steam pumps in hydraulic installations. It will be recalled that pumps were necessary in cases where water main pressure was insufficient to operate the elevator directly.

In both of these cases the operational demands on the motor were of course identical to those on the prime movers which they replaced; no reversal of direction was necessary, the speed was constant, and the load was nearly constant. Furthermore, the load could be applied to the motor gradually through automatic relief valves on the pump and in the mechanical machines by slippage as the belt was shifted from the loose to the fast pulleys. The ultimate simplicity in control resulted from permitting the motor to run continuously, drawing current only in proportion to its loading. The direct-current motor of the 1880’s was easily capable of such service, and it was widely used in this way.

[Larger Image]
Figure 15.—Rope-geared hydraulic freight elevator
using a horizontal cylinder (about 1883).
(From a Lane & Bodley illustrated catalog of hydraulic elevators, Cincinnati, n.d.)


[Larger Image]
Figure 16.—English direct plunger
hydraulic elevator (about 1895).
(From F. Dye, Popular Engineering,
London, 1895, p. 280.)
Adaptation of the motor to the direct drive of an elevator machine was quite another matter, the difficulties being largely those of control. At this time the only practical means of starting a motor under load was by introducing resistance into the circuit and cutting it out in a series of steps as the speed picked up; precisely the method used to start traction motors. In the early attempts to couple the motor directly to the winding drum through worm gearing, this “notching up” was transmitted to the car as a jerking motion, disagreeable to passengers and hard on machinery. Furthermore, the controller contacts had a short life because of the arcing which resulted from heavy starting currents. In all, such systems were unsatisfactory and generally unreliable, and were held in disfavor by both elevator experts and owners.
[Larger Image]
Figure 17.—Siemens’ electric
rack-climbing elevator of 1880.
(From Werner von Siemens,
Gesammelte Abhandlungen und Vorträge,
Berlin, 1881, pl. 5.)

[Larger Image]
Figure 18.—Motor and drive mechanism
of Siemens’ elevator.
(From Alfred R. Urbanitzky,
Electricity in the Service of Man,
London, 1886, p. 646.)

There was, moreover, little inducement to overcome the problem of control and other minor problems because of a more serious difficulty which had persisted since the days of steam. This was the matter of the drum and its attendant limitations. The motor’s action being rotatory, the winding drum was the only practical way in which to apply its motive power to hoisting. This single fact shut electricity almost completely out of any large-scale elevator business until after the turn of the century. True, there was a certain amount of development, after about 1887, of the electric worm-drive drum machine for slow-speed, low-rise service ([fig. 19]). But the first installation of this type that was considered practically successful—in that it was in continuous use for a long period—was not made until 1889,[7] the year in which the Eiffel Tower was completed.

Pertinent is the one nearly successful attempt which was made to approach the high-rise problem electrically. In 1888, Charles R. Pratt, an elevator engineer of Montclair, New Jersey, invented a machine based on the horizontal cylinder rope-geared hydraulic elevator, in which the two sets of sheaves were drawn apart by a screw and traveling nut. The screw was revolved directly by a Sprague motor, the system being known as the Sprague-Pratt. While a number of installations were made, the machine was subject to several serious mechanical faults and passed out of use around 1900. Generally, electricity as a practical workable power for elevators seemed to hold little promise in 1888.[8]


[Larger Image]
Figure 19.—The electric elevator in its earliest commercial form (1891),
with the motor connected directly to the load. By this time, incandescent
lighting circuits in large cities were sufficiently extensive to make such
installations practical. However, capacity and lift were severely limited by
weaknesses of the control system and the necessity of using a drum.
(From Electrical World, Jan. 2, 1897, vol. 20, p. xcvii.)
[Image Text]

[Larger Image]
Figure 20.—Advertisement for the Miller screw-hoisting machine, about 1867 (see p. [23]).
From flyer in the United States National Museum.
[Image Text]


Figure 21.—The first widespread use of electricity in the elevator field was to drive
belt-type mechanical machines and the pumps of hydraulic systems (see p. [14]) as shown here.
(From Electrical World, Jan. 4, 1890, vol. 15, p. 4.)