THE STEAM ELEVATOR

The progression from an elevator machine powered by the line shafting of a mill to one in which the power source was independent would appear a simple and direct one. Nevertheless, it was about 40 years after the introduction of the powered elevator before it became common to couple elevator machines directly to separate engines. The multiple belt and pulley transmission system was at first retained, but it soon became evident that a more satisfactory service resulted from stopping and reversing the engine itself, using a single fixed belt to connect the engine and winding mechanism. Interestingly, the same pattern was followed 40 years later when the first attempts were made to apply the electric motor to elevator drive.

Figure 8.—In the typical steam elevator machine two vertical cylinders
were situated either above or below the crankshaft, and a small pulley
was keyed to the crankshaft. In a light-duty machine, the power was
transmitted by flatbelt from the small pulley to a larger one mounted
directly on the drum. In heavy-duty machines, spur gearing was
interposed between the large secondary pulley and the winding drum.
(Photo courtesy of Otis Elevator Company.)

Figure 9.—Several manufacturers built steam machines in which a gear
on the drum shaft meshed directly with a worm on the crankshaft. This
arrangement eliminated the belt, and, since the drum could not drive the
engine through the worm gearing, no brake was necessary for holding the load.
(Courtesy of Otis Elevator Company.)

[Larger Image]
Figure 10.—Components of the
steam passenger elevator at the time of its peak
development and use (1876).
(From The First One Hundred Years,
Otis Elevator Company, 1953.)

By 1870 the steam elevator machine had attained its ultimate form, which, except for a number of minor refinements, was to remain unchanged until the type became completely obsolete toward the end of the century.

By the last quarter of the century, a continuous series of improvements in the valving, control systems, and safety features of the steam machine had made possible an elevator able to compete with the subsequently appearing hydraulic systems for freight and low-rise passenger service insofar as smoothness, control, and lifting power were concerned. However, steam machinery began to fail in this competition as the increasing height of buildings rapidly extended the demands of speed and length of rise.

The limitation in rise constituted the most serious shortcoming of the steam elevator ([figs. 8-10]), an inherent defect that did not exist in the various hydraulic systems.

Since the only practical way in which the power of a steam engine could be applied to the haulage of elevator cables was through a rotational system, the cables invariably were wound on a drum. The travel or rise of the car was therefore limited by the cable capacity of the winding drum. As building heights increased, drums became necessarily longer and larger until they grew so cumbersome as to impose a serious limitation upon further upward growth. A drum machine rarely could be used for a lift of more than 150 feet.[5]

Another organic difficulty existing in drum machines was the dangerous possibility of the car—or the counterweight, whose cables often wound on the drum—being drawn past the normal top limit and into the upper supporting works. Only safety stops could prevent such an occurrence if the operator failed to stop the car at the top or bottom of the shaft, and even these were not always effective. Hydraulic machines were not susceptible to this danger, the piston or plunger being arrested by the ends of the cylinder at the extremes of travel.

THE HYDRAULIC ELEVATOR

The rope-geared hydraulic elevator, which was eventually to become known as the “standard of the industry,” is generally thought to have evolved directly from an invention of the English engineer Sir William Armstrong (1810-1900) of ordnance fame. In 1846 he developed a water-powered crane, utilizing the hydraulic head available from a reservoir on a hill 200 feet above.

The system was not basically different from the simple hydraulic press so well known at the time. Water, admitted to a horizontal cylinder, displaced a piston and rod to which a sheave was attached. Around the sheave passed a loop of chain, one end of which was fixed, the other running over guide sheaves and terminating at the crane arm with a lifting hook. As the piston was pressed into the cylinder, the free end of the chain was drawn up at triple the piston speed, raising the load. The effect was simply that of a 3-to-1 tackle, with the effort and load elements reversed. Simple valves controlled admission and exhaust of the water. (See [fig. 11].)

Figure 11.—Armstrong’s hydraulic crane. The main cylinder was inclined, permitting gravity to assist in overhauling the hook.
The small cylinder rotated the crane. (From John H. Jallings, Elevators, Chicago, 1916, p. 82.)

The success of this system initiated a sizable industry in England, and the hydraulic crane, with many modifications, was in common use there for many years. Such cranes were introduced in the United States in about 1867 but never became popular; they did, however, have a profound influence on the elevator art, forming the basis of the third generic type to achieve widespread use in this country.

The ease of translation from the Armstrong crane to an elevator system could hardly have been more evident, only two alterations of consequence being necessary in the passage. A guided platform or car was substituted for the hook; and the control valves were connected to a stationary endless rope that was accessible to an operator on the car.

The rope-geared hydraulic system ([fig. 13]) appeared in mature form in about 1876. However, before it had become the “standard elevator” through a process of refinement, another system was introduced which merits notice if for no other reason than that its popularity for some years seems remarkable in view of its preposterously unsafe design. Patented by Cyrus W. Baldwin of Boston in January 1870, this system was termed the Hydro-Atmospheric Elevator, but more commonly known as the water-balance elevator ([fig. 12]). It employed water not under pressure but simply as mass under the influence of gravity. The elevator car’s supporting cables ran over sheaves at the top of the shaft to a large iron bucket, which traveled in a closed tube or well adjacent to and the same length as the shaft. To raise the car, the operator caused a valve to open, filling the bucket with water from a roof tank. When the weight of water was sufficient to overbalance the loaded car, the bucket descended, raising the car. On its ascent the car was stopped at intermediate floors by a strong brake that gripped the guides. Upon reaching the top, the operator was able to open a valve in the bucket, now at the bottom of its travel, and discharge its contents into a basement tank, to be pumped back to the roof. No longer counterbalanced, the car could descend, its speed controlled solely by the brake.

The great popularity of this novel system apparently was due to its smooth operation, high speed, simplicity, and economy of operation. Managed by a skillful operator, it was capable of speeds far greater than other systems could then achieve—up to a frightening 1,800 feet per minute.[6]

[Larger Image]
Figure 12.—Final development of the
Baldwin-Hale water balance elevator, 1873.
The brake, kept applied by powerful springs,
was released only by steady pressure on a lever.
There were two additional controls—the
continuous rope that opened the cistern valve to fill
the bucket, and a second lever to open the
valve of the bucket to empty it. (From
United States Railroad and Mining Register,
Apr. 12, 1873, vol. 17, p. 3.)

[Larger Image]
Figure 13.—Vertical cylinder,
rope-geared hydraulic elevator with 2:1
gear ratio and rope control (about 1880).
For higher rises and speeds, ratios of
up to 10:1 were used, and the endless rope
was replaced by a lever.
(Courtesy of Otis Elevator Company.)

In addition to the element of potential danger from careless operation or failure of the brake, the Baldwin system was extremely expensive to install as a result of the second shaft, which of course was required to be more or less watertight.

Much of the water-balance elevator’s development and refinement was done by William E. Hale of Chicago, who also made most of the installations. The system has, therefore, come to bear his name more commonly than Baldwin’s.

The popularity of the water-balance system waned after only a few years, being eclipsed by more rational systems. Hale eventually abandoned it and became the western agent for Otis—by this time prominent in the field—and subsequently was influential in development of the hydraulic elevator.

The rope-geared system of hydraulic elevator operation was so basically simple that by 1880 it had been embraced by virtually all manufacturers. However, for years most builders continued to maintain a line of steam and belt driven machines for freight service. Inspired by the rapid increase of taller and taller buildings, there was a concentrated effort, heightened by severe competition, to refine the basic system.

By the late 1880’s a vast number of improvements in detail had appeared, and this form of elevator was considered to be almost without defect. It was safe. Absence of a drum enabled the car to be carried by a number of cables rather than by one or two, and rendered overtravel impossible. It was fast. Control devices had received probably the most attention by engineers and were as perfect and sensitive as was possible with mechanical means. Cars with lever control could be run at the high speeds required for high buildings, yet they could be stopped with a smoothness and precision unattainable earlier with systems in which the valves were controlled by an endless rope, worked by the operator. It was almost completely silent, and when the cylinder was placed vertically in a well near the shaft, practically no valuable floor space was occupied. But most important, the length of rise was unlimited because no drum was used. As greater rises were required, the multiplication of the ropes and sheaves was simply increased, raising the piston-car travel ratio and permitting the cylinder to remain of manageable length. The ratio was often as high as 10 or 12 to 1, the car moving 10 or 12 feet to the piston’s 1.

In addition to its principal advantages, the hydraulic elevator could be operated directly from municipal water mains in the many cities where there was sufficient pressure, thus eliminating a large investment in tanks, pumps and boilers ([fig. 14]).

By far the greatest development in this specialized branch of mechanical engineering occurred in the United States. The comparative position of American practice, which will be demonstrated farther on, is indicated by the fact that Otis Brothers and other large elevator concerns in the United States were able to establish offices in many of the major cities of Europe and compete very successfully with local firms in spite of the higher costs due to shipment. This also demonstrates the extent of error in the oft-heard statement that the skyscraper was the direct result of the elevator’s invention. There is no question that continued elevator improvement was an essential factor in the rapid increase of building heights. However, consideration of the situation in European cities, where buildings of over 10 stories were (and still are) rare in spite of the availability of similar elevator techniques, points to the fundamental matter of tradition. The European city simply did not develop with the lack of judicial restraint which characterized metropolitan growth in the United States. The American tendency to confine mercantile activity to the smallest possible area resulted in excessive land values, which drove buildings skyward. The elevator followed, or, at most, kept pace with, the development of higher buildings.

Figure 14.—In the various hydraulic systems, a pump was required if
pressure from water mains was insufficient to operate the elevator directly.
There was either a gravity tank on the roof or a pressure tank in the basement.
(From Thomas E. Brown, Jr., “The American Passenger Elevator,”
Engineering Magazine (New York), June 1893, vol. 5, p. 340.)

European elevator development—notwithstanding the number of American rope-geared hydraulic machines sold in Europe in the 10 years or so preceding the Paris fair of 1889—was confined mainly to variations on the direct plunger type, which was first used in English factories in the 1830’s. The plunger elevator ([fig. 16]), an even closer derivative of the hydraulic press than Armstrong’s crane, was nothing more than a platform on the upper end of a vertical plunger that rose from a cylinder as water was forced in.

There were two reasons for this European practice. The first and most apparent was the rarity of tall buildings. The drilling of a well to receive the cylinder was thus a matter of little difficulty. This well had to be equivalent in depth to the elevator rise. The second reason was an innate European distrust of cable-hung elevator systems in any form, an attitude that will be discussed more fully farther on.