SECTION II.—Cestoda (Tapeworms).
Tænia mediocanellata, Küchenmeister.—This cestode is frequently spoken of as the unarmed or beef tapeworm. In general appearance it is very similar to the armed form. It is, however, a larger and broader animal, being at the same time rather stouter. It varies usually from fifteen to twenty-three feet in length, but specimens have been described as attaining thirty feet. It is called the unarmed tapeworm in consequence of the absence of any coronet of hooks on the head; and consequently, also, from there being no prominent rostellum or proboscis. The place of the last-named structure, however, is supplied by a small rudimentary disk, which I have seen protruded on pressure (fig. [20]). Usually this disk forms a more or less conspicuous cup-shaped circular depression, which has been compared to and described as a fifth sucker. That it is not, in any structural sense, comparable to the true suckers, I have had abundant opportunity of ascertaining; nevertheless, I do not doubt that it is to a slight extent capable of being used by the parasite as a supernumerary holdfast. The anchorage thus secured, however, is by no means equal to that obtained by the armed species. This explains the comparative difficulty we find in procuring a specimen of the armed tapeworm with the head attached.
Fig. 20.—Head of Tænia mediocanellata. Showing the calcareous corpuscles, suckers, rudimentary proboscis, and water vessels. Highly magnified. Original.
The establishment of this species as distinct from T. solium is due to Küchenmeister; but it is curious to observe how accurately this determination was foreshadowed by the shrewd naturalist and theologian, J. A. E. Goeze, who clearly indicated two forms of the common tapeworm, remarking (l. c., Bibl. No. 1, s. 278):—“Die erste ist die bekannte grosse, mit langen dicken und gemästeten Gliedern, die ich Tænia cucurbitina, grandis, saginata, nennen will.” The same author (s. 245) pointed out the resemblance subsisting between the tapeworm of the cat (T. crassicollis) and the vesicles (“Krystallblasen”) and their contained “erbsförmige Blasen” (Cysticercus fasciolaris) of the mouse. Thus the celebrated pastor of St Blasius, in Quedlinberg, almost contemporaneously with Pallas, early arrived at the conclusion that the hydatid-measle was a kind of tapeworm.
Fig. 21.—Free proglottides of Tænia mediocanellata. After Leuckart.
Respecting the organisation of this worm I may observe that the mature joints have a more complicated uterine organ than obtains in Tænia solium, presenting nearly double the number of lateral branches. They are more closely packed, running outwardly in an almost parallel manner. The first sexually mature proglottis occurs at about the 450th joint, but whereas, in the pork tapeworm, only some 200 subsequent segments share this perfect character in the beef tapeworm, according to Leuckart, as many as 360 or even 400 mature joint may be present. The joints are very liable to form monstrosities; these abnormalities sometimes affecting the reproductive organs, which become doubled or even trebled. In the Hunterian collection there is a proglottid showing twenty-two sexual orifices. Dr Cullingworth, of Manchester, has described a specimen in which the joints are curiously tripartite.
As already hinted the true source of this parasite has been proved by experiment; the first successful worm-feeding having been accomplished by Leuckart. Mosler’s, and subsequently my own feeding experiments, immediately followed. Other successful experiments with this species have been conducted by Zurn, Probstmayer, St Cyr, Perroncito, Masse and Pourquier, and Zenker. As will be again mentioned below Dr Oliver, R.A., whilst stationed at Jullundur, successfully reared the adult tapeworm in a Mohammedan groom and in a Hindoo boy. It will also be seen that Prof. Perroncito reared the worm in a student in fifty-four days. In my own experiments on animals I was assisted by Professor Simonds. The feeding materials were tapeworms expelled from my own patients. We obtained the following interesting results:
Exp. 1.—A calf. First feeding, Dec. 21st, 1864. Marked symptoms. Slaughtered April 3rd, 1865. Result positive.
Exp. 2.—A calf. First feeding, April 13th, 1865. Second, third, and fourth feedings in May and June. No symptoms. Died on Sept. 3rd, 1865, after thirty-six hours’ illness with “cattle plague.” Result stated to have been negative as far as the muscles were concerned. Viscera not examined.
Exp. 3.—A Dutch heifer. First feeding, March 3rd, 1865. Three subsequent feedings. Symptoms only slight. Slaughtered April 4th, 1866. Result positive. Measles especially numerous in the diaphragm, but all had undergone calcareous degeneration.
Exp. 4.—A calf. Fed May 27th, 1872, with ripe proglottides. Marked symptoms set in on June 7th, which began to abate on the 12th, and had nearly disappeared by the 20th of the same month. The record of the post-mortem result has been lost; but the animal was infected.
Exp. 5.—A calf, which had been made the subject of a “glanders experiment.” First fed on Oct. 17th, 1872, and thrice in the following year, Jan. 1st and 11th, and March 8th. No symptoms having appeared the animal was kept for six or eight months after the last feeding. Seeming to be free from disease of any kind, it was sold as a sound heifer.
Exp. 6.—A young heifer calf, of six months. Fed Oct. 18th, 1873, with the mature proglottides of a large beef tapeworm. No symptoms. Slaughtered several months afterwards. Result stated to have been negative. Unfortunately I was not present at the autopsy.
Exp. 7.—A young heifer. First fed May 19th, 1874, with the joints of a tapeworm, and again on June 12th. No apparent ill effects resulted, but the animal died in October. At the post-mortem examination, made by Prof. Simonds, no parasites were observed. Subsequently I found calcareous specks in the liver which proved to be degenerated measles.
Exp. 8.—A calf. Fed on or about March 24th, 1875, with sexually mature joints. The calf was put to and remained with a foster mother until it died from disease of the larynx on the 15th of the following July. The animal was ill-treated by its foster parent, and at the post-mortem I observed a large intercostal cicatrix, evidently the result of injury. In this case I devoted several hours to the exploration of the muscles and viscera. Not a trace of the Cysticercus bovis could be found in the muscles or connective tissues, but the liver contained scores of perfectly developed measles, besides hundreds of others in various stages of calcareous degeneration. On comparing some of the latter with those I had obtained from the preceding experiment the pathological appearances were at once seen to be identical. It was easy to find and pick out the measles in their cysts from the naturally friable liver. I also detected four Cysticerci in the lungs, two of which had degenerated. Microscopic examination confirmed my interpretation of the naked-eye appearances.
Fig. 22.—Section of the heart of a calf infested by cestode larvæ. After Mosler.
Fragmentary as the above data are, they serve to show that we have hitherto been too hasty in concluding that beef and veal measles reside only in the voluntary and striated muscles of their hosts. The facts here recorded prove that the liver of a calf may be extensively invaded by cysticerci, and yet the animal will exhibit no sign of constitutional disturbance. The cestode tuberculosis may come and go without any diagnostic symptom, whilst a few months suffice for the natural death and decay of the parasite by calcareous degeneration. Thus it becomes extremely probable that many experiments hitherto regarded as negative in their results have really been positive; the pathological evidences having been either misinterpreted or altogether overlooked. Every pathologist is familiar with gritty particles in the various viscera of man and animals, but few are probably aware how constantly these are dead and degenerated Cysticerci. The gritty particle itself may be reduced to the merest point, no larger than the receptaculum capitis of the Cysticercus itself, and in course of time it will disappear entirely. Practically it is satisfactory to have experimental evidence of the fact that cattle, as well as other animals, however extensively measled they may have been, can become thoroughly cleansed of the disorder by nature herself. It is only necessary that the diseased animals be separated from infectious influences.
Although the beef measle has never yet been found in man, I have for convenience sake introduced the facts of larval parasitism in this place. The sanitary bearings of this subject are far too important to be dismissed in a summary manner. I have shown that the prevalence or rarity of the beef tapeworm in man is strictly dependent upon the habits of the people; this same cause operating to produce healthy or diseased meat-food, according to the degree of civilisation. In this connection the oft-quoted statements of Kaschin respecting the prevalence of tapeworms among the Burätes, and the well-known frequency of this entozoon in Abyssinia, need only be alluded to.
When discussing the food question in my ‘Manual,’ I freely availed myself of facts privately communicated by Dr Joseph Fleming, and I especially referred to the published labours of Lewis, Hewlett, Veale, and other observers stationed in India. Beef measles are extremely common in the cattle of the north-west provinces of India, so much so that severe restrictions have been imposed upon the consumption of ration beef. The presence of a few measles in the flesh of cattle has been deemed a sufficient excuse for condemning and burying entire carcases. The measle is easily distinguished from that of mutton and pork by the fact that its head is not furnished with hooks, whilst in the place of a rostellum there is a small, centrally placed, retractile disk, which assumes the appearance of a supplementary sucker as in the adult worm. The four true suckers are also comparatively large. The measle usually varies in size from the fourth to the half of an inch in length, but my cabinet contains a specimen nearly an inch long. This was contributed by Dr J. Fleming, who mentions having seen a measle which, when unrolled, measured nearly an inch and a half in length. Although thousands of these bladder worms must exist in the cattle of England, up to the present time not a single instance has been recorded of the occurrence of these cystic parasites in the United Kingdom, except in our experimental animals. Notwithstanding my inquiries, I have not yet found a butcher, flesher, meat-inspector, or veterinarian, who has encountered this parasite in any animal slaughtered for the market. Several butchers have denied their occurrence in meat sold by themselves. Even so late as June, 1874, the presence of measles in the flesh of cattle was denied before an assembly of French savans; yet for many years past I have constantly exhibited measly beef and veal in the lecture room of the Royal Veterinary College. (See the discussion of the Société de Thérapeutique, recorded in the ‘Bullétin Gén. de Thér.’ for June 30th, 1874, and also the ‘Jour. de Thér.,’ No. 14, for July, p. 556, where, however, special remarks on this head have been omitted; see also the ‘Lond. Med. Record’ for July 29th, 1874, p. 472, and the ‘Lancet’ for Dec., 1874, p. 794.) Quite in contrast with the statements referred to are those of recent Italian observers.
Some few years back Professor G. Pellizzari communicated to the Medico-Physical Academy, at Florence, the results of a series of experiments conducted by himself, with the assistance of Dr Tommasi, in regard to the temperature necessary for the destruction of cysticerci in measled meat. An account of these experiments is published in Tommasi’s edition of my ‘Manual.’ The researches were made in relation to certain sanitary measures effected by the Municipal Commission of Florence, the express object of these measures being to prevent the injurious distribution of measly meat, especially that of swine. Signor Bosi, the superintendent of the public slaughterhouses, granted every facility in his power. In a previously published memoir by Professor E. Perroncito it was stated that measly meat (panicatura degli animali) required a higher temperature than that of boiling point for the destruction of the bladder worms in question. In this opinion Signor Bosi shared. According to the original memoir of Perroncito we are told that “about twenty specimens of Cysticerci were collected by the author, and placed in boiling water. After twenty minutes’ boiling, not one of the parasites appeared to suffer. The head continued to be drawn into the body, and when the Cysticerci had their heads drawn out one by one they still appeared to possess all the elasticity of living bladder worms, displaying those movements of extension which are proper to parasites not yet dead. The hooks were observed regularly disposed on the proboscis, where they formed a double crown, the suckers remaining intact.” Perroncito remarked, however, that the Cysticerci showed a coloring tendency towards brown, and he added that “with the aid of two needles it became easy to lacerate the body of the Cysticercus, which appeared to be swollen, and possessed of diminished cohesion of its parts.” It was evident to all eyes, observed Professor Pellizzari, that these statements involved clear contradictions. Yet again, at page 28 of the memoir, Professor Perroncito wrote:—“During the past winter I introduced some little slices (fettuccie) of muscle-flesh (8 to 10 millimètres in thickness), infested with Cysticerci into a vessel (cassolina) containing fat at the temperature of 190 to 200° Cent. (374 to 400° Fahr.). At the expiration of ten or fifteen minutes the slices of meat were fried, and the Cysticerci lying at the surface had acquired a light brownish colour, as if they were roasted. By breaking up the slices one could still see the small reddish muscular bundles, whilst the Cysticerci in the middle remained entire and well preserved. Their heads displayed the hooks and suckers regularly distributed.” It is certainly singular, as Pellizzari observes, that these Cysticerci, having been thoroughly fried and roasted, should still remain alive and in their normal state; but the ultimate conclusion at which Perroncito arrived was still more startling, and one which, if it were true, would not fail to create a considerable stir among our officers of health. On reviewing the whole matter Perroncito says:—“It appears to me that the melted fat alone of hogs (maiali grandinosi) should be utilised, and I am pleased to reckon the illustrious Gerlach and all other distinguished practitioners to be of the same opinion. Permit me, therefore, being well satisfied also with the results of many other experiments, once more to advance the conclusion that, if it is not certain that the Cysticerci die at from 80 to 100° Centigrade (176 to 212° Fahr.), we are quite sure that they dry up and become completely mummified at 125, 130, and 150° Cent. (257, 268, and 302° Fahr.), temperatures which we could easily produce by means of a properly constructed apparatus.”
After remarking upon the serious nature of the conclusion which Perroncito sought to establish, Professor Pellizzari makes further use of quotations which bear upon the question as to whether the quality of the vessels in which the fat of diseased hogs is melted down may not largely affect the degree of high temperature sought to be obtained (in view of a perfect destruction of the Cysticerci). Perroncito repeatedly witnessed the operations of pork-butchers; and when portions of meat were introduced, with water, into the cauldrons, he always saw that the temperature “was maintained between 97° and 98° Centigrade.” However, this part of the question may be dismissed in a very few words, since Perroncito himself finally allows that “the different composition of the vessels cannot elevate the temperature of the fat by many degrees.”
With the praiseworthy intention of either verifying or refuting these conclusions, Pellizzari, with the approval of Bosi and with the assistance of Tommasi, instituted a fresh series of experiments at a private laboratory. The details of these experiments are exceedingly interesting; but as their record occupies several pages of Tommasi’s appendix already referred to, I must content myself with a general statement of the results obtained. Professor Pellizzari found that Cysticerci, so far from requiring a temperature of upwards of 100° Centigrade for their destruction, die at a temperature of 60° Centigrade (140° Fahr.). He had, it appears, previously taken the initiative in recommending certain measures to the Florentine municipality, in view of protecting the public health, and he had now the satisfaction of more than confirming the wisdom of these sanitary precautions. In excessively measled animals the fat is removed and boiled in suitable cauldrons, and has potash mixed with it to render it useful for industrial purposes. By the various measures adopted the entire animal is utilised, and with proper precaution there seems little chance for the measles to arrive at the tænioid or sexually mature condition.
In the next part of his communication Pellizzari touches upon the question of measles in beef, referring especially to the experimental labours of Leuckart and myself. Finding additional support from our views Pellizzari declared the propositions of Dr Perroncito as of no value whatever. “But how is it,” he adds, “that notwithstanding that so low a temperature suffices to kill these cysticerci, yet cases of Tænia are continually occurring?” The answer to this question will appear in the sequel; but meanwhile it will be as well to refer to the recent brochure by Dr Giacomini. This author appears to have had no opportunity of perusing Pellizzari’s communication already cited, and consequently it is not surprising that he should, in common with others, have accepted the original conclusions of Perroncito. Dr Giacomini clearly perceives that, whatever precautions of a hygienic character are suitable for the prevention of disease arising out of the consumption of measly pork, the same, or at all events similar, measures ought to be adopted with the view of checking tapeworm affections arising from the ingestion of other kinds of meat, especially veal and beef. Like Pellizzari, he is satisfied as to the human origin of the small bladder worms found in cattle, and establishes this position not only from the oft-quoted experiments of Leuckart and Mosler, but also from those conducted by myself and Simonds in England, and by Professor F. Saint-Cyr in France. From a careful review and consideration of all the facts of the case, he recommended a more complete supervision over the flesh of oxen before it is employed commercially, and greater precaution when employing veal as food, by causing it to be subjected to a high temperature, in order that the parasites may be killed before it is ingested. It is evident that Giacomini thinks that a temperature exceeding that of boiling-point is necessary for the destruction of the beef and veal measles, since he immediately adds, “Though experiments have not been made with the object of ascertaining the amount of resistance of heat which the unarmed cysticercus can bear, yet, judging by those conducted by Professor Perroncito on the measle of the hog, we are in a position to say that a temperature of 135° Cent. (275° Fahr.) is necessary for the destruction of an isolated Cysticercus, whilst the heat should be raised from 150° to 200° Cent. (302° to 392° Fahr.) for ten or fifteen minutes, in order to ensure the complete destruction of the Cysticerci encapsuled in the interior of a piece of meat.” I have abridged this portion of Giacomini’s text, because his statements are pretty much the same as those already quoted from Perroncito (as cited by Tommasi). But, in the next place, Dr Giacomini is in error when he states that experiments had not been performed on the Cysticerci of the ox. So far from this being the case, similar experiments had long previously been conducted by Dr Lewis in India; and these researches had quite as much to do with the measles or Cysticerci of beef as they had with those of the hog, if not more. Naturally but few foreign investigators can have had access to the work in which Lewis’s experiments were originally recorded, and to which, therefore, I must call their attention. Thus, Dr Tommasi has fallen into the error of supposing that the investigations of Lewis were made in England. It is of very little moment where the experiments were carried on, but Tommasi’s statement (appendix, loc. cit., p. 161), wherein he says that Pellizzari’s experiments, in which he himself took part (ai quali io stesso ho assistito), are even more complete than those made in England by Dr Lewis, and in Germany by Dr Küchenmeister, cannot be allowed to pass unchallenged. If Tommasi had enjoyed the opportunity of consulting Lewis’s original memoir, he would not have underestimated our countryman’s labors. The memoir by Lewis is singularly complete, and well-nigh exhausts all the facts that can have any interest in relation to the question of public health. Towards the close of his essay he expressly states, as the result of investigation—“(1) That exposure to a temperature of 120° Fahr. for five minutes will not destroy life in Cysticerci, but that they may continue to manifest indications of life for at least two or three days after such exposure; (2) that exposure to a temperature of 125° Fahr. for five minutes does not kill them; but (3) after being subjected to a temperature of 130° Fahr. for five minutes, they may be considered to have perished. After exposure to this and higher temperatures, in no instance have I been able (he adds) to satisfy myself that the slightest movements took place in their substance when examined even under a high power. At least, it may be confidently asserted that, after exposure for five minutes to a temperature of 135° to 140° Fahr., life in these parasites may be considered as absolutely extinct” (p. 139). Thus the statements of Lewis and Pellizzari were in perfect accord; and seeing that their conclusions were alike the result of very careful and independent inquiry, it seemed as if the question at issue was finally solved. These investigations made it perfectly clear that Cysticerci of all kinds, whether found in veal, beef, or pork, could not retain their vitality when exposed to a temperature of 60° Centigrade, or, in other words, 140° Fahr.
The rather severe strictures made on Perroncito’s earlier experiments induced the Turin professor to go over the subject more carefully, when he obtained excellent results. He finally ascertained that Cysticerci perished at a temperature below 50° C. (122° Fahr.). In May, 1877, Dr Perroncito furnished me with an account of his researches. With the exception of a few verbal alterations, for which I am responsible, Perroncito wrote as follows:
“In order to resolve the highly important question of the tenacity of life of the Helminths and corresponding larval forms, I made since 1871 a very long series of experiments on the Cysticercus cellulosæ, which were published almost at the same time with others of the same kind, made by Dr Lewis in Calcutta. Towards the end of 1874 Mr Pellizzari, of Florence, disputed the results of the investigations which I had made known two years before, i.e. in 1872, and agreed with Dr Lewis, who had stated already that the Cysticercus exposed to a temperature of 55° C. can be held for dead after five minutes, and also with Dr Cobbold, who thought the temperature of 60° C. quite enough to kill it. But the characters he (Mr Pellizzari) relied upon, needing the exactness and precision required to enlighten and persuade in the most important scientific questions, gave rise to a mistrust in the most scrupulous amongst the men devoted to biological pursuits and to several hygienic measures on the part of the sanitary inspectors with regard to infected pork. Therefore, my conclusions, argued from the experiments made in 1871–72, were still those followed by the most important Italian cities, and approved in principle by the superior Board of Health in 1873. I expressed doubt then about the Cysticercus dying at a temperature lower than 100° C., and some person misconstrued these doubts, saying that I had contradicted myself in my work. However, as I could not assert they died at 80°–100° C., I only noticed the alteration of color and cohesion which happened in the Cysticercus exposed to various degrees of temperature, to the end that I might contribute usefully to the solution of the difficult question, and concluded that ‘if we could not be sure of the Cysticercus dying at 80°–100° C., it was certain at all events that they perished at 125° or 130° C.’ Not wishing to prejudice the question, I never said that they did not die at 80°–100° C., but simply stated that at this temperature we could not be certain of their death.
“Now, after a large number of experiments, I have been able to ascertain with exactness the lowest degree of temperature required to kill infallibly the Cysticercus and other parasites of animals. The means I made use of for this kind of investigation were Mr Schulze’s heating table, the neutral tincture of carmine, the tincture of hæmatoxylon, and breeding experiments.
“My method is founded essentially—
“(a) On the fact that the Cysticercus when it is fresh and is stretched and conveniently prepared in pure water, or in chloride of soda very much diluted, and afterwards brought gradually from the temperature of the ambient air to that of the body of higher animals and to degrees of heat still more elevated, until life is extinct, keeps moving to and fro with more or less energy throughout its body, using especially its suckers and proboscis.
“(b) On the greater imbibing power of the dead tissue generally, which is undoubtedly far more apparent in insects and plathelminths.
“(c) On the experiments made to ascertain the value of the two above-stated facts.
“If, after having prepared a Cysticercus, newly extracted from a pig in the way we have pointed out, we examine it with a microscope on M. Schulze’s heating table, we find that usually it begins to move after 30° or 35° C., and each moment with greater activity, especially after 38°, 40°, 42°, 44°, 45° C. The temperature being raised progressively, we see that the Cysticercus cellulosæ puts a stop to its movements occasionally at 45–46° C., seldom at 47° C., more frequently at 48° C., sometimes at 49° C.; and, in fifty and more experiments, only one Cysticercus was able to live on beyond 49° C., standing still at 50° C.
“As soon as it stands still the parasite is dead. In fact, if we lower again the temperature gradually to that of the ambient air, and if afterwards we raise it a second time, we pass through all the intermediate temperatures without the Cysticercus showing the least signs of life.
“But a more convincing proof of the death of the parasite is got from the greater imbibing power of the tissue when life is extinct, the same over the whole body of the plathelminths, and their larval forms. If we dip the Cysticercus alive with its head stretched in the neutral tincture of carmine or hæmatoxylon we can leave it there even two, four, eight, ten, or twelve hours and more, without the head coloring or a real imbibition taking place; this begins only after the Cysticercus is dead, so that if the Cysticercus is brought first to a temperature hot enough to kill it (with M. Schulze’s tables to one of 48°, 49°, 50° C.) and dipped afterwards in the above-mentioned tinctures, it colors intensely in less than 45°, beginning from the head, and onwards to the extremity of the cyst of the tail. The head colors more intensely and rapidly than the neck, as it is covered with very numerous calcareous corpuscles, which are not met with so frequently in the remaining part of the body.
“Cysticercus cellulosæ of the pig, and that of the Tænia mediocanellata of the calf, brought gradually to a final temperature, the first of 50° C., and the second of 44°, 45°, and 47° C., and then swallowed alone, or with a piece of butter or crumb of bread, never produced the Tænia in the valiant students who voluntarily undertook to make the experiment of swallowing them.
“My investigations were extended to other kinds and forms of Helminths, and the results were always the same, so that, abiding by the same principles, I was able to ascertain that—
“1st. The Cysticercus cellulosæ of the pig dies sometimes at 45° C., more frequently at 47° C., ordinarily at 48° C., very seldom reaches alive 49° C., and is quite an exception when it resists for a few moments the temperature of 50° C., so that we can say that the Cysticercus brought gradually up to this temperature most assuredly dies if it is kept there longer than one minute.
“2nd. A Cysticercus cellulosæ, extracted by Professor Raymond from the conjunctiva of a child’s eye, died between 45° and 46° C.
“3rd. The Cysticercus of the Tænia mediocanellata dies sometimes at 44° C., very often at 45° C., and does not resist a temperature superior to 46° C.
“4th. The Cysticercus pisiformis of the rabbit, like the cellulosæ, dies sometimes at 45° and 46° C., but generally stands still and perishes at 47° and 48° C.
“5th. A Cysticercus tenuicollis died at 49° C.
“6th. The scolici of the Cœnurus cerebralis of a sheep died at 42° C.
“7th. The scolices of the cysts of Echinococcus polymorphus die generally between 47° and 48° C., and in no case amongst those I have experimented on did it reach 50° C. alive.
“8th. The Tænia cucumerina died, one at 43° C., and a second parasite at 45° C.
“9th. A few individuals of Tænia serrata of the dog died at 50° C.
“10th. Two individuals of Tænia perfoliata of the horse died, the first at 45° C., the second at 50° C.
“11th. The embryos of the Filaria microstoma of the horse began to stand still at 46–47°, and all died at 48° C.
“12th. The embryos of the Filaria megastoma of the horse’s stomach died at 47° C.
“13th. The Trichina spiralis, both free and in a cyst, in several experiments always died at 48° C.
“14th. The embryos of the Strongylus filaria of the sheep stood still at 50° C.
“15th. Probstmayer’s viviparous oxyurids, the infusoria of the colon and cæcum of the solipeds, and the psorosperms of the liver of the rabbit did not stir at all.
“Each experiment lasted about ten minutes, and the temperature rose from 8–10° C. to 45–46° C. in six to eight minutes; and from 46° to 50° in one minute. These experiments have a great value, both scientific and practical, as they show, on one side, which is the lowest intensity of heat sufficient to kill always the Cysticercus, the Trichina, and other parasites, reducing thus by far the tenacity of life generally attributed to a large number of Helminths and corresponding larval forms. They assure us, moreover, of the harmlessness of the flesh infected by the above-mentioned parasites, when it is cooked in such a manner as to reach the temperature of 50° C. over all points of the pieces, even though it be kept at such a degree of heat not longer than five minutes.
“In a piece of leg of pork the Cysticerci were found alive in all places not yet putrefied twenty-nine days after the animal had been slaughtered. On the other hand, in the dry muscles of a calf the Cysticerci of the Tænia mediocanellata were all found dead fourteen days after the slaughtering of the animal. I have ascertained that putrefaction of the flesh is fatal for the two larval forms of these different kinds of helminths.”
In a subsequent communication received from Professor Perroncito towards the close of the year 1877 he writes:
“At the last meeting, held on April 23rd, I made a statement to the Medical and Surgical Society of Turin, of the results of other experiments tried by heating at M. Schulze’s table and by the imbibitions with the neutral tincture of carmine, through which I came to the conclusion that the Cysticerci of the Tænia mediocanellata die sometimes at 44° C., now and then at 45° C., and always at 46° C. I therefore concluded that they could in no case survive at 47° C. and 48° C. when they were maintained at this temperature at least five minutes. But to the end of more fully corroborating the facts I had thus communicated, I, contemporaneously with these, made some breeding experiments with the same Cysticerci on bold and courageous students who generously offered themselves for the benefit of science.
“Consequently I am now enabled to state that neither Mr Gemelli nor Dr Ragni contracted the Tænia, though each of them had eaten a Cysticercus of the Tænia mediocanellata previously, and respectively subjected to a temperature of 45° C. and 47° C. The larvæ were properly prepared and submitted to gradual heating on the above-mentioned table, and swallowed when they no longer gave signs of life. In like manner no generation of the Tænia took place in the body of Mr Martini, who ate the Cysticercus brought to a temperature of 44° C. It was maintained at this degree of heat during a period of about three minutes, and swallowed whilst a very slight movement was still visible in a portion of its neck.
“In another student, on the contrary, who ate a living Cysticercus of the Tænia mediocanellata, the tapeworm reached its maturation in fifty-four days and eliminated the two first proglottides. It threw off two more on the fifty-eighth day, and thirty on the sixtieth. Sixty-seven days after swallowing the Cysticercus this courageous young man, having, like his three companions, taken some kousso and castor oil, emitted the strobila. It was furnished with 866 rings, but destitute of the neck and head. Its measurement afforded a total length of 4·274 mètres.
“Adding now to the 866 proglottides the thirty-four already eliminated, 900 would be the number of the segments; and reckoning the length of each of the latter to be fourteen millimètres, we should have had the strobila (deprived of the head and neck) reaching a length of 4·75 mètres. Further, calculating the head and neck to be eight millimètres long, a total length of 4·83 mètres would be the result.
“From all these facts we may conclude that the Tænia has, in our instance, reached an approximative length of seventy-two millimètres a day, affording a daily production of 13·43 proglottides.”
In relation to requirements of state medicine I have thought Perroncito’s researches sufficiently valuable to be quoted at some length; but their chief interest culminates in the worm- feeding experiments. Excellent in all respects as was the conduct of the medical students who, with Professor Perroncito’s approval, swallowed living specimens of the Cysticercus bovis, the intentional ingestion of beef measles is by no means a novelty. Eight or ten years back Dr Oliver (after explaining to one of the selected victims the possible consequences of the experiment) induced a Mahommedan syce or groom and a Hindoo boy to swallow perfectly fresh and living beef measles. In this way Dr Oliver successfully reared the Tænia mediocanellata in India, and he was thus enabled to fix the amount of time necessary for the full growth of the strobila. Many other persons have displayed an equal amount of zeal in the cause of helminthology, by partaking of the larvæ or germs of other parasites. Thus, at the risk of repetition, I may state that Möller many years ago swallowed the slender-necked hydatid (Cysticercus tenuicollis) in the hope of infesting himself with Tænia marginata. Several persons have defiantly swallowed trichinised flesh. Professor Leuckart and some of his pupils also courageously swallowed the eggs of Oxyurides, and they had the infinite satisfaction of noticing the young worms in their fæcal discharges some fifteen days afterwards. Dr Crisp ate part of the cooked flesh of an animal that had died of cattle plague, and I myself partook of moderately cooked meat which I knew to be swarming with psorosperms. These obscure organisms were by some persons considered to be either a cause or product of the rinderpest. They will be noticed in my account of the Protozoal parasites.
For the purpose of advancing science and the welfare of the people, there are scores of persons always to be found ready to make personal sacrifices of the kind undertaken by Drs Ragni, Martini, and Gemelli. Unfortunately for English science there are not wanting people in this country who are prepared to threaten with fines and imprisonment any savant who may think it desirable to perform a similar set of feeding experiments on animals. Invaluable for good as our experimental investigations have already been, it would seem as if it were the deliberate aim of these sentimental obstructives to put a stop to the acquisition of all useful knowledge in the future.
In reference to the rate of growth of tapeworms, Professor Perroncito’s determinations are useful, inasmuch as they verify certain ascertained facts with precision and confirm the general conclusion that had been drawn by practical helminthologists from various sources of information. In regard to the number of proglottides proper to a sexually mature tapeworm, the circumstance that Perroncito’s calculation was made without the head and a portion of the neck of the worm being present shows that it cannot be relied on absolutely; nevertheless, as far as it goes, it tends to confirm what Leuckart had long previously stated. I have possessed myself of upwards of thirty perfect beef tapeworms expelled from my patients, and in some of the specimens it was noticed that the segmentation-rings in the region of the neck were far more crowded together than they were in others. I also possess a perfect Tænia mediocanellata, removed post mortem. Though the rate of growth may be the same from day to day, yet experience has shown that the number of proglottides actually cast off varies exceedingly. Küchenmeister’s estimate of the average number agrees in the main with what we have ourselves observed (five to twenty daily); and here again Perroncito’s investigations serve to verify the general correctness of our previous determinations.
To return to Pellizzari’s researches, one of the most important questions is that which relates to the prevalence of tapeworm. In this connection he first brings forward some very interesting and instructive data that had been previously communicated to the Medico-Physical Academy of Florence by Professor Marchi. On the occasion referred to Marchi had stated that, out of thirty-five Tæniæ which he had examined, only one belonged to the species known as Tænia solium; all the other thirty-four being of the unarmed type, or Tænia mediocanellata. Reflecting on this striking fact, and also on the circumstance that he had in vain begged his colleagues to send him specimens of Tænia solium, Marchi seems to have missed the very palpable explanation of this otherwise strange phenomenon. “How does it happen,” exclaimed Marchi, “that, notwithstanding the occurrence of 13,000 kilogrammes of the flesh of measled hogs in the public butcheries, I have seen but one specimen of Tænia solium, whilst thirty-four cannot have originated from the pig?” “The wherefore is obvious enough,” replies Pellizzari, “because our hygienic regulations demand that the flesh of the hogs be raised to a temperature of 60° Cent. (140° Fahr.);” and he then himself immediately proceeds to ask another question, namely, as to how it happens that the Tænia solium is so frequently seen in other places. To his own question Pellizzari responds by remarking—(1) that there are not so many precautions (of a sanitary kind) taken in other places; and (2) that the people elsewhere consume more slightly salted or uncooked meat, as sausages and so forth (come salame giovane, salciccia e via dicendo). Pellizzari, having explained that Marchi’s thirty-four tapeworms must all have arisen from the consumption of the Cysticercus of the ox, then goes on to speak of the prevalence of tapeworm in Florence, even in little children. This last-named feature, he says, is due to the circumstance that raw meat is frequently employed as a restorative (come cura ricostituente). “Thirty years ago,” remarks Professor Pellizzari, “it was just as difficult to find a single Tænia mediocanellata as it is now easy to find a great number of these worms; and all because it is nowadays customary to eat the flesh of the ox either insufficiently cooked or raw. This absolute inversion of the facts of the case affords proof of the correctness of the position sustained by me, to the effect that the cooking of meat up to the degree of temperature necessary for ebullition ensures the destruction of the Cysticerci.” Notwithstanding this statement of his own, Pellizzari thinks that the interference of inspectors may be pushed too far, and thus serve to bring about the very disasters which it should be their supreme object to prevent. Thus, he argues against the suggestions of those who would entirely prevent the sale of measly meat, and who would only permit, as obtains in the province of Modena, the melting down of the fat of hogs. Very strict measures of this sort would, as he says, constitute a radical means of entirely stamping out Tænia, but he also very judiciously reminds the sanitarian (igienista) that “such a step would be a serious thing for the tradesman, bringing injury not only to the municipal administration, but also proving an encouragement to smuggling. In this way the public health would sustain worse injury by the inducement held out to the owners of infected animals to slaughter them in secret butcheries, thus little by little withdrawing the meat from the superintendence of the public officials. By the adoption of fraudulent measures there would be a daily consumption of diseased meat; and thus also, while the public administration would suffer loss, the public health, on the other hand, would gain nothing.” In effect Pellizzari says, if we advise the employment of more severe and radical measures than those already in vogue in Florence, we should overburden the tradesman, almost compel him to defraud the exchequer by smuggling, and greatly injure the public health.
The facts and explanations advanced by Italian writers regarding the causes of the endemic prevalence of tapeworm, are in perfect harmony with those previously obtained from other sources. Respecting these causes there is much that is both new and interesting. The eighth annual report of the sanitary commissioner of the Government of India had already made us acquainted with the fact that during the year 1869, out of 13,818 head of cattle slaughtered in the stations of the Upper Punjab, 768 beasts were found to be infected with measle-cysts. This, as I have remarked (Tommasi’s edit., p. 54), “affords a rate of 5·55 per cent., being a considerable diminution of the proportion observed in 1868, when the percentage gave a total of 6·12. The reduction was, without doubt, due to the vigilance and enlightenment of the army meat inspectors. The prevalence, however, of tapeworm does not bear relation to the number of animals infested with Cysticerci so much as to the actual number of Cysticerci developed in infected animals. I have frequently pointed out the inadvisability of condemning and burying the carcases of measly oxen, whether there be few or many Cysticerci present, and I have stated, on trustworthy evidence, that even the presence of a few Cysticerci is deemed by some inspectors a sufficient reason for rejecting the entire animal. Such a waste should never be allowed. In regard to the numbers of ox-measles present in particular instances, I have elsewhere adduced some remarkable facts communicated to me by Dr Joseph Fleming, of the Indian Army Medical Staff. None of my experimental animals, though fed with scores of ripe proglottides, yielded such an abundance of Cysticerci as Dr Fleming encountered in Punjab cattle. In one pound weight of the psoas muscles Fleming counted no less than 300 Cysticerci.” From this it follows that the flesh of a largely infested animal is capable, under the circumstances of ration distribution and imperfect cooking, of originating numerous tapeworms.
Not many years back the leading medical journal of this country challenged me to produce evidence as to the injuriousness of beef and mutton from Cysticerci. The writer stated in his article that I had “failed to produce a single specimen of beef or mutton measles” which had not resulted from experiments conducted “at the Royal Veterinary College;” and he said, further, “that butchers, fleshers, and veterinarians were practically right in refusing to adopt the opinion of Dr Cobbold, that measled beef or mutton is produced to any great extent” independently. How palpably I endured a species of unjust reproach for being somewhat in advance of the knowledge current at the time may be gathered from the voluminous evidence which has since cropped up from various parts of the world. It was, indeed, mainly through experiments conducted at the Royal Veterinary College, and reported in the ‘Lancet,’ that professional men in India first became acquainted with the possibility of finding Cysticerci in beef.
The statements of Dr Joseph Fleming, who was one of the foremost in discovering cystic disease in cattle, have since received abundant confirmation. The Indian Government Reports given in the February issue of the ‘Madras Monthly Journal of Medical Science’ for 1873 are especially instructive. Referring to the prevalence of Cysticercus in the ration beef at Jullundur, in the Punjab, the Inspector General (India Medical Department) reports as follows:
“Cysticercus was first noticed here in the beef tendered at the Royal Artillery ration stand in May, 1868. For some two years previous to this date condemnations of cyst-infected meat had been frequent at Peshawur, Rawul Pindee, Meean Meer and several other stations in the upper part of the Punjab, and here I had often detected the parasite in meat exposed for sale in the bazaars, but no trace of it had been observed in the Commissariat beef, either by myself or any other medical officer who had preceded me.
“From May, 1868, to November, 1869, ‘cyst’ was more or less frequently found both at the Artillery and 92nd Highlanders’ ration stands; but since the latter date it has almost entirely disappeared.
“The following table shows the quantity of meat destroyed on this account during 1868 and 1869:
“The whole of this meat was otherwise well fed and of excellent quality. The waste of so much good food led me to make inquiries; 1st, as to the sources from which the cattle obtained the Tænia ova, and the best means for preventing their infection; and 2ndly, as to whether or not any evil results followed the consumption of this meat when properly cooked.
“From information obtained from the Commissariat Officer I found—1st. That the infected cattle had been purchased by native dealers from various parts of the district, not from any particular locality. 2ndly. That when brought in they were lean, and on an average required from two to three months’ feeding at the Commissariat cattle yards before they were fit for the shambles. 3rdly. That their food consisted of the grass they could pick up on the grazing grounds of cantonments, supplemented by such an allowance of grain and bhoosâ as their condition required.
“They were supposed to be watered at a trough with water drawn from a well, but on closely inquiring as to this, it transpired that they very frequently were taken to a large dirty tank near the yard for their water. The question which occurred to me was, were the cattle infected before their purchase by the Commissariat, or was there anything in their feeding to account for it after purchase? I am inclined to the latter opinion for several reasons, thus:—In the large number of the diseased cattle, the Cysticerci were of remarkably small size; many of them having no capsules, except such as were formed by the surrounding structures, and not being more than 1/8 to 1/4 of an inch in diameter. Although the dry food given to the cattle was doubtless good, still much of the water they got during 1868 was probably filthy. The tank previously referred to was situated close to the huts of the camel drivers. These men are all Mussulmans from Cabul, Peshawur, or thereabouts, and many of them are infected with Tænia mediocanellata. Human filth was often to be seen on the banks of the tank, and microscopic examination of mud and stagnant water taken from the margin exhibited Tænia ova.
“The conditions above shown must have been eminently favorable to keeping up a constant supply of ova, and the fact that Cysticercus entirely disappeared from amongst the cattle a few months after means had been taken to secure them a good supply of well water, seems to confirm the view that this tank must have been the source of a large amount of, if not all, the infection.
“It has been suggested that Cysticercus can be detected before the animal is killed by an examination of the tongue. In exceptionably severe instances this is probably correct, but then it would be equally observable in some other parts of the body. Major Biggs, Commissariat Officer here, tells me of an animal he saw at Rawul Pindee, in which immense clusters of cysts could be felt at the root of the tongue and under the skin in several parts. After examining a very large number of tongues of ‘cysted’ animals, my experience is that it is found in the soft muscles and cellular tissues at the root of the tongue, perhaps more frequently than anywhere else; but I have never seen a case in which there was a chance of detecting it before death.
“The most common situations in which it has occurred in the ration meat have been the gluteal, psoas, and lumbar regions. In many instances only from one to ten cysts have been found on cutting the carcase into small pieces, and I have no doubt that it often passed without detection.
“During 1868 and 1869 I from time to time obtained pieces of beef badly infected with Cysticercus, and made some experiments as to the results of its consumption under different conditions.
“After explaining to them the possible consequences of eating it a buttock of beef studded with Cysticercus was given to three natives of low caste. They all declared that they were free from Tænia, or, to use their own term, “Kadhu dana.” The meat they cooked in their own way. These men were under my observation for some six months. Two of them had no symptom of Tænia, but the third, who was a low-class Mahommedan syce, and had probably eaten the meat in a very raw state, developed a Tænia mediocanellata in about three months.
“My own sweeper ate this cyst-infected beef regularly two or three times a week for some months. He cooked it well generally as an ordinary stew, and has never shown a sign of having tapeworm.
“Into the food of a boy of low Hindoo caste, but who had never eaten beef, two scolices of Cysticercus were surreptitiously introduced, the result being that, between three or four months afterwards, he applied for some tapeworm medicine.”
[The two successful experiments here reported are evidently the same as those that I have referred to (p. [72]) as having been performed by Dr Oliver, of the Royal Artillery, stationed at Jullundur. The report continues as follows:]
“Tænia mediocanellata is very common amongst the Mussulman population of the Punjab, and from reliable sources I am informed that the lower classes amongst them are in the regular habit of eating half-cooked beef; indeed, prefer it so, and it is amongst these people that tapeworm is so prevalent.
“But it is not only thorough cooking that is required to guard soldiers in India from the ill effects of eating measly meat; there is want of cleanliness in the general arrangements of the kitchens and serving of meals, which must offer great facilities for the introduction into the food of Cysticercus.
“Barrack cooks, unless constantly looked after, are utterly careless as to the washing of chopping blocks, tables, dishes, &c. The dish or pot cover on which the meat is placed when raw is often used without washing for serving the piece up for dinner, and I have myself picked up a Cysticercus from the table on which a cook was preparing food. The dangers too of the parasite being conveyed by the cook’s unwashed hands to the plates in which meals are served, and the common practice of using the same knife for cutting up meat, and afterwards, without washing it, for other culinary purposes, must not be overlooked. With good selection and careful feeding there seems to be every probability that Cysticercus would soon almost or completely disappear from our Commissariat cattle. If they were entirely stall-fed and watered from wells there could scarcely be a possibility of infection after their purchase.
“Perhaps with the trench system of conservancy, which will necessitate the growing up crops, a sufficient quantity of root and other green produce may be obtained from cantonment lands set apart for this purpose, to supply green fodder for the cattle.”
The important question as to whether the presence of cysts detected at the root of the tongue could be made available for the purposes of diagnosis was made the subject of special report through the agency of executive Commissariat officers, and they testified to its practical valuelessness in the following terms:
“Jullundur.—No appearance of cyst has been found at the root of the tongues of any of the cattle. A medical officer was asked for assistance in making search for the cysts, but he also found none.
“Rawul Pindee.—It is utterly impossible to discriminate before slaughter, from any outward symptoms, cattle that are cyst infected.
“Every endeavour has been made to discover by close and careful scrutiny before slaughter the cyst-infected cattle, but the result has been in no way satisfactory.
“Sealkote.—All endeavours to discover any symptoms of the infection by examination of their tongues, while the animals were living, have been unsuccessful.
“Mooltan.—The mouth and tongue of a large number of living cattle have been examined before slaughter, but in no single instance has the infection been so detected.
“Dr Ross’s plan of examining the tongues of all animals at time of purchase is not feasible, as they are usually very wild and frightened, and often dangerous to approach.
“Peshawur.—In probably 99 cases out of 100 it is utterly impossible to discover cyst infection in cattle previous to slaughter by examination of their tongues. In only one instance has it been so discovered, and that was from the animal’s having a number of small lumps over the body which were also apparent on the back part of the tongue. When the tongue is infected the ‘cyst’ lies so far at the very root of it that it cannot be seen in the live animal.”
From Mooltan a specially interesting report was made by Dr Alexander Neill, who says:—
“I have carefully examined the mouth and tongue of a large number of living cattle, and of those slaughtered for issue as rations, and in no single instance did I find such cysts. These cattle were healthy.
“In a case that died, and in which cysts existed, I could discover nothing abnormal in or under the tongue.
“If such ‘cysts’ exist, or if such enlargements of the sublingual glands are found, I argue that they are not a diagnostic sign of what is termed ‘cyst infection,’ or more correctly ‘Cysticercus bovis,’ for in the recent outbreak of cattle disease in England, one most prominent symptom of that disease was a bunch of grape-like swelling under the tongue, which in advanced cases suppurated, and to a casual observer would have been called cysts or ‘bags of matter.’
“If such swellings are found in a bullock that is sick, it is merely symptomatic of an inflamed condition of the whole mucous surface of the intestinal canal, and not of any localised disease, such as Cysticercus, the above-mentioned swellings being merely inflamed sublingual glands.
“In the pig the diagnostic sign of swellings of the glands or ‘cyst’ under the tongue is not found in ‘Cysticercus,’ and the disease called ‘measles’ is not ‘Cysticercus,’ but a mere superficial inflammation of the skin and a symptom of fever. ‘Cysticercus cellulosus,’ as its name shows, infects the cellular tissue only of the pig, and cannot be discovered in life by any abnormal condition of skin.
“In ‘measles’ these swellings are found, because intestinal mucous membrane sympathises with eruption on the skin and are then merely inflamed glands, not cysts.”
Dr Neill concludes his report by remarking that the larvæ of the beef tapeworm can “only arrive at maturity in the mucous membrane of horned cattle,” and not in the cellular tissue. This is an error on Dr Neill’s part; but in adducing these instructive extracts from the Government Reports my chief object has been to show the prevalence of Cysticercus in the North-West Provinces of the Indian Peninsula. I may say that a large proportion of my tapeworm-infected patients have been officers from the Punjab, and one of these victims told me that when he superintended the serving out of rations to the troops, “he (and those who acted with him) sent the meat away to be burnt, even when they only detected a single cyst in any given carcase.” It is needless to remark that such a waste of valuable food is altogether reprehensible.
Some people, including not a few of the profession, make light of the occurrence of tapeworm, and I have seen many patients who had been told by their usual medical advisers that the presence of the worms was of little consequence. To account for this wide-spread error there is some basis in the fact that by far the majority of infested persons suffer only the trifling inconvenience arising from the passage per anum of the proglottides; moreover, the less civilised the tapeworm-bearers happen to be, the less are they likely to suffer. The recorded experience of Kaschin, before referred to, where 500 hospital patients, in the Baikal district, had tapeworm, although all of them were being treated for other disorders, affords another argument tending to the same conclusion. On the other hand, amongst Europeans only a small percentage of tapeworm-patients suffer severely. But without trenching upon the symptomatology and prognosis of tapeworm disease, I may remark that I have (in my Manual) summarised the whole facts of cysticercal prevalence within the compass of two brief propositions:—1. The prevalence or the rarity of Cysticerci in cattle in any given country must be determined primarily by the habits of the people; for since the beef measle can only result from the ingestion by the ox of the eggs of the Tænia mediocanellata, it is clear that the degree of infection of cattle will correspond with the facilities offered by egg-dispersion. 2. It may be affirmed that the frequency of this particular species of tapeworm amongst the people occupying any given area will bear a strict relation to the amount of underdone measly beef consumed by the inhabitants.
Another question, and one of great interest to sanitary science, is that which I have raised in reference to the period that nature requires for the destruction of the Cysticerci, or, in other words, for the performance of a natural cure by calcareous degeneration of the parasites. I have shown that all kinds of tapeworm larvæ (measles, bladder-worms, cœnuri, and so forth) have a natural life-epoch assigned to them, and in one of my experiments on a Dutch heifer or young cow I demonstrated that a period of ten months was more than sufficient to ensure the perfect destruction of the Cysticerci of cattle. Moreover, this law or process of natural cure is not limited to cestode parasites, but affects all other kinds of internal parasites in one or other of their juvenile stages of growth. In the flesh of my experimental animal I estimated that there were not less than 12,000 of these degenerated Cysticerci. This positive contribution to our knowledge of the limits assigned by nature to the epoch of larval activity is not merely one of abstract scientific interest, but it has important practical bearings, inasmuch as it points out in what way an entire herd of cattle (known to be measled by the post-mortem examination of one animal previously selected for the purpose, or for that matter, by the rather barbarous act of excising and examining a fragment of the muscle of a living one) may be freed of its parasitic guests; and it also shows how all risk of propagating tapeworm, apart from the question of subjecting the flesh to a certain temperature, may be effectually prevented. The stockowner has but to remove his animals for six or eight months to localities where no fresh infection can occur, when, at the expiration of the time mentioned, all those Cysticerci that existed in the beasts at the time of the transfer will have perished. The flesh of the animals may then be eaten with impunity, whether well cooked or raw. This is an important teaching deducible from experimental inquiry, and I am rather surprised that it has hitherto escaped the notice of persons who, though they affect to ignore the value of scientific researches, are particularly anxious to parade their practical knowledge, which, unhappily, too often proves a mere cloak for ignorance.
The memoir by Giacomini already quoted (p. [65]) affords interesting details respecting a case in which there was a most unusual degree of infection of the human body by Cysticerci. Dr Giacomini instituted a searching comparison between the human measles procured by himself and those of the pig sent to him by Professor Perroncito. In the human Cysticerci he noticed a greater adherence of the capsule to the enclosed measle, and he also observed that while the human measle-heads either displayed thirty-two, or in some few cases thirty-four hooks, in two differently sized circles of fifteen or sixteen each, the pig-measles, on the other hand, carried only twenty-four hooks to the double circle of equal circumference; consequently the hooks appeared to be more crowded together in the human parasite. This fact, Giacomini remarks, does not of itself constitute an essential specific difference, since variations of the kind not unfrequently occur in Cysticerci occupying one and the same host. Even the beef-measle is not necessarily confined to one species of host, since Zenker has succeeded in rearing it in a goat.
Although the substance of the above-recorded conclusions was originally communicated by me, anonymously, to a professional periodical, I have considered this work a suitable medium for a fuller discussion of the subject. Its importance in relation to the public health and the supply of meat-food has not received the attention it deserves.
Bibliography (No. 13).—Balert, B., ‘Die Bandwürmer,’ &c. (pamphlet), 1877.—Bertolus, G., ‘Diss. sur les metamorph. des cestoïdes,’ Montpellier, 1856.—Cobbold, T. S., “On the Production of the so-called ‘Acute Cestode Tuberculosis’ by the Administration of the Proglottides of Tænia mediocanellata” (with Mr Simonds), in ‘Proc. of the Royal Society’ for May 4th, 1865; repr. in the ‘Veterinarian’ for 1865, p. 513.—Idem, “Experimental Investigations with Cestoid Entozoa,” in ‘Linn. Soc. Journ.,’ vol. ix, p. 170; also for July, 1865, p. 141.—Idem, “On Beef, Pork, and Mutton, in relation to Tapeworms,” in ‘Brit. Assoc. Rep.’ for 1865, p. 102, and in ‘Appendix to Treatise on Tapeworms and Threadworms,’ 1st Edit., 1866, p. 73; also in ‘Med. Times and Gaz.’ for Sept. 23rd, 1865, p. 343.—Idem, “Remarks on Entozoa,” in ‘Brit. Assoc. Rep.’ for 1865, p. 102; also on “Cystic Entozoa from Veal and Mutton,” in the ‘Path. Soc. Trans.’ for 1866, vol. xvii, p. 462.—Idem, “Entozoa found in a Westphalian Ham;” report in ‘Athenæum’ for March 27th, 1869, p. 442; also in ‘Brit. Med. Journ.’ for March 20th, 1869.—Idem, “Note on Beef Measles from a Cow,” in ‘Path. Soc. Trans.,’ vol. xvii, p. 463, 1866; also in the ‘Lancet’ for Feb. and August, 1865, p. 249.—Idem, ‘Entozoa,’ &c., p. 235 et seq., 1864; and in ‘Supp.,’ sections iii, iv, v, 1869.—Idem, ‘Tapeworms,’ 3rd Edit. (with 100 cases), 1875, p. 11.—Idem, ‘Manual of the Internal Par. of Domesticated Animals,’ chap. iii to vi, 1874.—Idem, ‘Worms,’ Lectures i to xi, 1872.—Idem, “On the Parasites of our Food-producing Ruminants (Cantor Lectures),” in the ‘Journ. of the Soc. of Arts,’ 1871.—Idem, “On the Entozoa of Abyssinia” (Lecture), in ‘Lancet,’ 1867.—Idem, “Remarks on Eighty Cases of Tapeworm,” ‘Lancet,’ June, 1874.—Idem, “Revised List of Entozoa, with notes and references (the beef tapeworm, No. 15, and the beef measle, No. 25),” in the ‘Veterinarian,’ Dec., 1874, and Feb., 1875.—Idem, (anonymously), “Cysticerci, being a review of the writings of Pellizzari, Tommasi, Perroncito, Lewis, Giacomini, &c.,” contributed to the ‘Lond. Med. Record,’ 1874, p. 642 et seq.; repr. in the ‘Veterinarian,’ Jan., 1875.—Idem, “Notice of a Discussion by Paul, Martineau, Créquy, Delioux de Savignac, Trasbot, and others, respecting the Source and Treatment of Tapeworm,” ‘Lond. Med. Rec.,’ July, 1874, p. 472.—Idem, “Review of the Writings of Oliver, Fleming, Hewlett, Lewis, and others, on the Cystic Disease of Animals,” ‘Lond. Med. Rec.,’ June, 1873, p. 339.—Idem, “Further Experimental Researches with the Eggs of the Beef Tapeworm,” the ‘Veterinarian,’ Aug., 1875.—Idem, “Remarks on Perroncito’s Researches,” the ‘Veterinarian,’ Dec., 1877.—Dardel, A., “Sulla frequenza della Tenia in Savoia,” ‘Giorn. d’Accad. di Med.,’ 1868.—Davaine, C., ‘Traité’ (1. c. Bibl. No. 1), 1860.—Idem, “Les Cestoides,” in ‘Dict. Encyclopédique des Sci. Med.,’ 1875.—Fleming, J., ‘Indian Med. Gaz.,’ 1869.—Fock, H. C. A. L., ‘De Lintworm en het middel om hem mit te drijven,’ Utrecht, 1878.—Fritsch, G., “Zur differentiellen Diagnose von T. solium and T. mediocanellata,” ‘Berliner Klinische Wochenschrift,’ 1874.—Gamgee, J., “Entozoa in Veal and Beef” (Letter on), ‘Lancet,’ 1865.—Giacomini, C., ‘Sul Cyst. cell. hominis e sull Tænia med, contrib. alla studio dei Cestoidi Parrassiti dell’ Uomo,’ Torino, 1874.—Heller, A., “Darmschmarotzer,” in von Ziemssen’s ‘Handbuch der speciellen Pathol. und Therapie,’ s. 598 et seq., 1876.—Hewlett, ‘Health Officer’s Report,’ Bombay, 1870.—Krabbe, H., ‘Beretning om 100 Tilfælde af Bœndellorm hos Menesket iagttagne her i Landet (Aftryk af Ugeskrift for Læger),’ 1869.—Küchenmeister, F., ‘Ueber Cestoden im Allgemeinen und die des Menschen insbesondere, hauptsählich mit Berücksichtigung ihrer Entwickelungsgeschichte, geographischen Verbreitung, Prophylaxe und Abtreibung; specieller Theil. Zittau,’ 1853.—Idem, ‘Parasiten’ (1. c. Bibl. No. 1), 1855, Eng. Edit., London, 1857.—Laboulbéne, A., “Sur les Tænias,” ‘Mém. de la Soc. Méd. des Hôpit.,’ 1876.—Idem, ‘Anat. Pathologique,’ 1879, p. 962.—Letheby, “On Diseased Meat,” ‘Med. Times and Gaz.,’ 1867.—Leuckart, R., ‘Die Menschl. Par.,’ Bd. i, s. 285 and s. 747, 1864.—Levi, “Della freq. della tenia,” &c., ‘Giorn. Veneto di Scienz. Med.,’ 1874.—Lewis, T. K., “A Report on the Bladder Worms found in Beef and Pork” (‘App. B. to 8th Ann. Rep. of the Sanit. Commiss. with the Gov. of India’), Calcutta, 1872.—Masse, E. et Pourquier, P., “Le Tænia inerme et la lardrerie du Bœuf, Nouvelles Expériences,” &c., in ‘Montpellier Med. Journ. Mens. de Méd.,’ p. 220, 1876.—Mosler, ‘Helminthogische studien und Beobachtungen,’ Berlin, 1864. Neill, A., “Letter, forming the fifth of a series of important articles on Cyst-infected Cattle, and on the prevalence of Cysticercus in Beef,” reported by the Inspector General (I. M. D.), in the ‘Madras Monthly Journ. of Med. Sci.,’ Feb., 1873; repr. in the ‘Veterinarian,’ July, 1873.—Nitsche, H., “Untersuchungen ueber den Bau der Tænien,” ‘Sieb. und Köll. Zeitschrift,’ 1873.—Oliver, “Rejections of Ration Beef on account of Cystic Disease” (l. c. supra), ‘7th Rep. of the Commiss.,’ p. 82, Calcutta, 1871.—Perroncito E., “Della panicatura negli animali,” ‘Annali della R. Accad. d’Agricolt. di Torino,’ vol. xv, 1872.—Idem, “Sulla morte del Cyst. cell. delle carni del majale;” ibid., 1872.—Idem, “Ueber die Lebenszähigkeit des Cyst. cell. und anderer Eingeweidewürmer,” ‘Zeitsch. f. prakt. Veter.-Wissenschaften,’ Bern, 1876.—Idem, ‘Della Grandine o Panicatura nell’ Uomo e negli animali,’ Torino, 1877.—Idem, “Esperimenti sulla produzione del cisticerco nelli carni del bovini, coll’ amministrazione di anelli della tænia med. dell’ uomo,” ‘Lo Studente Vet.,’ Parma, 1876, p. 146.—Idem, “Sulla tenacita,” &c., ibid., 1877, p. 194.—Idem, “Esperimenti sulla prod. del Cyst. della T. med. nelle carni dei Vitelli,” ‘Estr. della Annali d. R. Accad. d’Agric. di Torino,’ vol. xx, 1877.—Idem, “On the Tenacity of Life of the Helminths, and their corresponding Larval Forms in Man and Animals,” the ‘Veterinarian,’ July, 1877, p. 457.—Idem (with similar title, including notice of experiments), the ‘Veterinarian,’ Dec., 1877; partly from ‘Osservatore Gaz. d. Cliniche di Torino,’ and from ‘Archivvo per le Sci. Med.,’ vol. i, 1877.—Idem, “On the Tenacity of Life of the Cysticercus in the flesh of Oxen, and on the rapid development of the corresponding T. mediocanellata in the Human Body,” the ‘Veterinarian,’ Dec., 1877, p. 817.—Probstmayr, ‘Jahrb. der Münchener Thierarzneischule,’ 1869.—Rochard, “Note sur la fréquence du Tænia mediocanellata en Syrie, et sur la présence du cysticerque qui lui donne naissance, dans la chaire musculaire des bœufs de ce pays,” in ‘Bulletin de l’Acad. de Méd.,’ 1877, tom. vi, p. 998.—Thudichum, J. W. L., “On the Parasitic Diseases of Quadrupeds used as Food,” ‘Privy Council Med. Officer’s Rep.’ 1865.—Sommer, F., “Ueber den Bau und die Entwickelung der Geschlechtsorgane, von Tænia mediocanellata und T. solium,” in ‘Siebold and Köll. Zeitschrift,’ Bd. xxiv, s. 499, 1874.—St Cyr, “Deux Experiences,” &c., ‘Journ. de l’Anatomie, de Robin,’ p. 504; and in ‘Lond. Med. Rec.,’ by Higgs, vol. i, 582, 1873.—Tommasi, T., ‘Appendice (to Cobbold’s) Parasiti Interni degli Animali Domestice,’ p. 161, Firenze, 1874.—Van Beneden, P. J., “Iconographie des Helminthes ou des vers parasites de l’homme” (Vers Cestoïdes, pl. ii), Louvain, 1860.—Welch, F. H., “Observations on the Anatomy of Tænia mediocanellata,” ‘Quart. Journ. of Microsc. Science,’ vol. xv, 1875.—Zenker, in ‘S. B. Soc.,’ Erlang. iv, s. 71.—Zurn, ‘Zoopathologische und physiol. Untersuchungen,’ 1872.
Tænia solium, Linneus.—This cestode was formerly known as the common tapeworm, but in England it is of far less frequent occurrence than the beef tapeworm. In contradistinction it is best to speak of it as the pork tapeworm. Though only one specimen is usually present, the bearer may entertain several worms of this species at one and the same time. The parasite has been known to science from the earliest times, though possibly not earlier than the measles, or Cysticerci, from which it originates. Hippocrates, Pliny, and Aristotle describe the full-grown worm; and, in regard to the larvæ, some have gone so far as to express their belief that the prohibition of swine’s flesh as food amongst the Jews and other Oriental people, was dictated by sanitary considerations. Weinland has suggested that the Mosaic commandment not to eat pork may have originated in an old popular notion “of the fact that tapeworm sometimes comes from this food.” Weinland’s hypothesis is probably correct, for if one supposes Moses to have been supernaturally informed that pork would produce tapeworm disease, one naturally asks why veal and beef should not also have been prohibited, seeing that these meats also frequently harbour tapeworm larvæ.
A perfect pork tapeworm presents itself to the eye of the observer as a long, soft, white, jointed strobile, which, when alive, elongates and contracts itself with facility. Though commonly spoken of as a single creature, it is a compound of many individuals. These are variously called “cucurbitini,” “zooids,” “proglottides,” “segments,” “links,” or “joints.” When fully grown the segments are capable of detaching themselves and of enjoying a free and independent existence. Very annoying it is to the human bearer to be continually reminded of his unwelcome “guests” as they seek to quit his interior.
The head of Tænia solium is seldom seen in anatomical museums, although the evacuation of pork tapeworms is not of rare occurrence. Placed under the microscope, the head displays a quantity of dark, almost black, pigment granules, which are abundant at the base of the rostellum and in the neighbourhood of the hook-fangs. They are equally present and abundant in the pork measle proper, and in measles derived from the human subject. The cephalic hooks of this cestode are comparatively large, those of the greater circle individually measuring 1/156″, whilst the smaller hooks have a length of about 1/220″.
Fig. 23.—Head of Tænia solium. Highly magnified. After Van Beneden.
The male reproductive organ consists of a number of small vesicles or sacs, in which filiform spermatozoa have been detected, these latter, when ripe, being conducted by a vas deferens into a seminal pouch, from which a canal passes laterally into the penis; the latter organ, in its retracted condition, being lodged within a flask-shaped sheath or cirrhus-pouch. The female organs are somewhat more complicated. They consist of two masses of vitelligene glands occupying a limited space, a small ovarium, a centrally-placed and largely-developed branched uterus, canals of outlet leading from all these organs, and enlargements of the main passages to form internal seminal reservoirs; also, a vaginal canal, which is widened at its termination to form a receptaculum for the curved penis.
In addition to the above-named structures, the entire series of joints from the head downwards are traversed by a set of vascular canals, which are doubled in the region of the head. These form the so-called aquiferous system. There are two main channels, one passing down on either side of the worm, both being connected by transverse vessels, which occur singly at one end of every joint.
The eggs in their mature condition are globular, and contain a six-hooked embryo. They present an average diameter of 1/694 of an inch, the shell itself measuring about 1/4000″ in thickness. In 1856 I observed that many of the eggs, whilst still within the uterine branches, displayed an outer envelope, very delicate in structure and totally dissimilar from the egg-shell proper. This has since been more accurately described by Weinland, Van Beneden, and Leuckart. The outer membrane, according to the last-named authority, constitutes the primitive yolk-membrane, within which a part of the yolk-contents separates to form the true egg and embryo by a process of daughter-cell formation. The remaining part of the yolk forms a granular mass, being probably concerned in the formation of the true chitinous shell. The true shell displays a series of radiating and circular lines; the former, however, are more conspicuous than the latter, being due, according to Leuckart, to the presence of a series of fine rod-like chitinous elements, which are formed on the external surface of the original true shell-membrane. The enclosed embryo is furnished with six boring spines, arranged in three pairs, its granular body being invested by an extremely delicate skin-membrane, which is separated from the inner surface of the shell by a clear transparent fluid. The embryo measures 1/1250″ in diameter.
The scolex or higher larval stage of growth forms the well-known pork measle or Cysticercus (telæ) cellulosæ of authors. The smallest measles found by Leuckart measured 1/25″ in length. They were obtained from the brain, liver, and intermuscular substance of a pig fed with proglottides about thirty days previously. Only those specimens, however, occurring in the liver at this early period displayed an outer membrane proper to the worm itself, the others being simply invested with capsules formed out of the connective tissues of the host. Many measle-masses in the same host were much larger, presenting an average diameter of 1/6″. The smallest already displayed a smooth, transparent, homogeneous, outer, cuticular membrane, overlying a double, finely-granular corium, the latter being traversed by a branched system of aquiferous vessels. These vessels proceed from a central spot, which marks the position of the so-called head-cone, or receptaculum capitis. It is, in fact, the first well-marked indication of that flask-shaped capsule within which the head, neck, and body of the Cysticercus is formed, and which Goeze long ago very aptly compared to a lantern. As growth proceeds, a central granular mass forms the true foundation of the head, its upper or stalk-like extension becoming the future neck and body. Further changes result in the evolution of the internal water-vascular system, the calcareous corpuscles, the marginal transverse foldings of the body, the four suckers, the rostellum, and, in particular, the double coronet of hooks. All these metamorphoses were minutely followed and described by Leuckart, who found the development of the larva to be completed within the space of ten weeks.
As regards the injurious effects of this parasite upon man, it may be said to act prejudicially in three separate ways. I have remarked in my ‘Entozoa,’ that this parasite may cause disease and death both by its action in the larval and adult states. It may likewise injure us by rendering the flesh of swine unwholesome.
When one or more sexually-mature tapeworms have developed themselves within the human intestine, they are apt to give rise to a variety of unpleasant symptoms, more or less marked according to the habit or irritability of the patient. According to Davaine (p. 103 of his ‘Traité’) the principal features are “vertigo, noises in the ears, impairment of sight, itching of the nose and anus, salivation, dyspepsia and loss of appetite, colic, pains over the epigastrium and in different parts of the abdomen, palpitation, syncope, the sensation of weight in the abdomen, pains and lassitude in the limbs, and emaciation.” In ordinary cases there is always more or less anxiety and restlessness; but in severe cases the sympathetic symptoms are very strongly marked, showing themselves in hysterical fits, chorea, epilepsy, and epileptiform seizures, attended by more or less alarming convulsions.
Amongst some of the more interesting and remarkable cases recorded in our English journals, I may instance that of Mr Hutchings, where a complete cure followed the evacuation of the worm which had produced convulsions. Mr Tuffnell records a case where irritability of the bladder and stricture of the urethra were entirely dependent on tapeworm, as proved by the subsequent recovery. At a meeting of the Pathological Society, in 1853, Dr Winslow mentioned his experience of three or four cases of mania arising from tapeworm; whilst on the same occasion Drs Ryan and Davey each recorded a similar instance. A case has also been previously published by Mr W. Wood. At a meeting of the London Medical Society, held on the 10th of April, 1837, Dr Theophilus Thomson (during an interesting discussion on this subject) stated the facts of a case where the presence of tapeworm had given rise to a tumultuous action of the heart, this symptom entirely disappearing after evacuation of the worm. Our journals likewise (anonymously) record a considerable number of cases from foreign sources. Thus, in the ‘London Medical Gazette’ for 1840, there is the case of a lady, aged thirty-seven, who had convulsions attended with a complete loss of consciousness, the separate fits lasting an hour at a time. The passage of the worms effected a complete cure. In the same journal for 1838, there is also the case of a younger lady (aged twenty-seven) suffering from epilepsy, in whom a complete cure had been similarly brought about; here, however, in addition to a single specimen of the Tænia solium, there were two lumbrici present. This journal also gives Ettmüller’s case, where eighteen tapeworms were the cause of hysteria; and likewise the case published by Steinbeck, where the symptoms presented an altogether peculiar character. More precise references to some of the above cases will be found in the ‘Bibliography’ below; and I may also refer to my published lectures on Helminthology and especially to my separate work on Tapeworms, where particulars of one hundred cases are briefly recorded. These were all average cases occurring to me whilst in private practice. Davaine’s book also abounds with remarkable cases.
Whilst the adult worm is capable of producing serious and even fatal mischief to the bearer, the larvæ or measles much more frequently prove fatal. The Cysticerci may develop themselves in almost any situation in the human body, but they occur most commonly in the subcutaneous, areolar, and intermuscular connective tissue; next, most commonly in the brain and eye, and lastly, in the substance of the heart and other viscera of the trunk.
In my ‘Entozoa’ I have stated that probably not less than one hundred cases have been observed where death had resulted from Cysticerci in the brain. Griesinger alone collected between fifty and sixty such cases. Mental disturbance occasioned by the presence of measles in the brain may occur with or without epilepsy. When Griesinger states that “the epilepsy from Cysticercus is in all respects like cerebral epilepsy and the psychical disturbances have nothing characteristic about them,” he tacitly admits the impossibility of correct diagnosis during life.
Since the publication of Griesinger’s well-known memoir on Cysticerci of the brain, many similar cases have appeared, and amongst the more recent of these is one by Dr Frédet in which the victim was a young man twenty-two years of age. Though apparently in good health he fell dead in the street; the fatal result being due to the presence of a Cysticercus within the pons Varolii.
Many other cases of earlier date are especially noteworthy. Thus Mr Toynbee recorded a case where an hydatid (which I take to have been the Cysticercus cellulosæ) situated in the middle cerebral fossa beneath the dura mater, but in this instance death ensued from other causes. Mr Ottley gives the case of a woman aged forty, where an undoubted Cysticercus in the brain gave rise to distressing fits, convulsions, and death. Then, again, there was Dr Burton’s workhouse patient, only twenty years of age, who was found dead in bed, but who at the time of admission merely complained of pain in the head. After death, four hydatids (Cysticerci) were found in the tuber ancillare at the summit of the spinal marrow. M. Bouvier’s similar case is also reported in our periodicals. Of instances where Cysticerci occupied the cavity of the eye, we have one or two cases by Mackenzie of Glasgow, one by Mr Rose of Swaffham, and others by Windsor, Logan, and Estlin. Amongst the more peculiar cases, I may mention that described by Dr Greenhalgh in the ‘Lancet’ (1848), where the Cysticercus was lodged within the substance of the lip. Five similar cases are likewise recorded by Heller of Stuttgard. Then there is Dupuytren’s case of a Cysticercus ensconced within the great peroneus muscle; and also Fournier’s, where several of these scolices were said to have been found in a boil. The so-called Trachelocampylus, discovered by Frédault in the human brain, was neither more nor less than a common Cysticercus cellulosæ.
Fig. 24.—Head of a Cysticercus removed from the brain. Magn. 5 diam. with detached hooks. Original.
It is worthy of remark, as Griesinger has also observed, that in cases where the Cysticerci have taken up their temporary residence in the brain, they are usually found, post mortem, in the grey cortical or peripheral substance of the cerebrum. The particulars of such a case are given in my ‘Entozoa’ where the victim suffered from epileptic fits due to the presence of numerous Cysticerci (fig. 24). The patient was under Mr Hulke’s care.
As regards infection by the adult worm it is not alone sufficient that we avoid underdone meat, as brought to the dinner-table, but we must be especially careful to have our sausages well cooked. Under ordinary circumstances, we are safe for the following reasons:—No respectable butcher will knowingly supply us with pork or with sausages which are measled. Even in the case of underdone meats, in whatever way prepared, it is usually only a small portion which is unaffected by cooking. As we have seen a temperature of 140° Fahr. is sufficient to kill the Cysticerci.
The successful rearing of pork measles by experimentation with the eggs of T. solium has been accomplished by many helminthologists, amongst whom may be particularised Van Beneden, Leuckart, Küchenmeister, Haubner, Gerlach, and Baillet. The converse experiment of rearing the adult worm from the Cysticercus was first successfully undertaken by Küchenmeister on a condemned criminal; Leuckart, Humbert, and others having repeated this method with more or less success.
The dangers arising from infection by swallowing the larval worms or six-hooked embryos are not easily avoided. Our flesh, like pork, thus becomes measled, although certainly not to the spawn-like extent so often seen in the lower animals. A single measle is sufficient to prove fatal; and this humiliating contingency, moreover, is one which we can never be absolutely certain of avoiding. We become the “host” or bearer of the measle by swallowing the fully-developed eggs of the Tænia solium. This we may do directly by handling fresh tapeworms, whose eggs, being concealed under our nails or in our clothing, may subsequently be swallowed, and develop within us accordingly. Even a thorough washing of the hands will not ensure absolute security. In like manner, those who partake of choice salads, prepared from the stores of the market-gardener, run a certain amount of risk. The vegetables may have been manured with night-soil containing myriads of tapeworm eggs, or they may have been watered with fluid filth into which the eggs were accidentally cast. In such cases, one or more tapeworm ova will be transferred to the digestive organs, unless the vegetables have been very carefully cleansed. In the same way, one perceives how fallen fruits, all sorts of edible plants, as well as pond, canal, and even river water procured from the neighbourhood of human habitations, are liable to harbour embryos capable of gaining entrance to the human body. One individual suffering from tapeworm may infect a whole neighbourhood by rendering the swine measly, these animals, in their turn, spreading the disease far and wide. As already remarked, measles sometimes occur in great numbers in different parts of the body. Among the more remarkable cases of the multiple Cysticerci are those recorded by Delore (1864) and Giacomini (1874). In M. Delore’s case, about 2000 were obtained post mortem. Of these, 111 occurred in connection with the nervous centres, eighty-four being in the cerebrum, twenty-two in the membranes of the brain, four in the cerebellum, and one within the substance of the medulla oblongata. Dr Knox published a less notable instance in the ‘Lancet’ (1838); and in the year 1857, Dr Hodges, of Boston, U.S., published a case where the cysts, which in size he compared to rice grains and coffee beans, were felt subcutaneously. The coexistence of Tænia and Cysticerci in the same individual has also recently been observed in France (‘Lond. Med. Rec.,’ 1875). Besides these, several remarkable instances have lately been reported by Davy, Tartivel, and others.
To the literature already quoted in connection with the beef tapeworm the following may be added:
Bibliography (No. 14).—Aran, in ‘Archives Gén. de Médecine,’ 1841.—Baillet, “Helminthes,” art. in ‘Bouley and Reynal’s Dict. Vétérin.,’ tom. viii, 1869.—Bécoulet and Giraud, “On Cysticercus in the Brain,” ‘Bullet. de la Soc. Méd. de Gand,’ 1872; and in ‘Lond. Med. Rec.,’ Feb., 1873.—Birkett, J., Cases, ‘Guy’s Hosp. Rep.,’ 1860.—Bouchut, “Cyst. in the Brain,” ‘Gaz. des Hôp.,’ 1857, and ‘Journ. für Kinderkrankheit.,’ 1859.—Bouvier, ‘Bullet. de l’Acad.,’ 1840.—Burton, in ‘Med. Times and Gaz.’ (supposed hydatids), 1862.—Cobbold, “On Measly Meat and Measles in Man,” the ‘Veterinarian,’ 1876.—Czermack, “Cysticerci causing Insanity,” Corresp.—Blatt, 1838.—Dalton, J. C., “Cyst in the Scrotum,” ‘New York Journ. of Med.,’ 1857.—Davaine (see his ‘Traité’ for many additional references; p. 676).—Davy, R., “Cysticerci in the Muscles,” ‘Rep. of Lond. Med. Soc.,’ ‘Lancet’ for Nov., 1876.—Estling, “Cases of Cysticercus,” ‘Lond. Med. Gaz.,’ 1838–39.—Frédet, “Cysticercus in the pons Varolii,” in the ‘Lancet’ for June 23rd, 1877 (p. 925), from ‘Giornale Veneto de Scienze.’—Fournier, ‘Journ. des Connois. Med. Chir.,’ 1840.—Griesinger, “On Cysticerci of the Brain,” from ‘Med. Jahrb.’ in ‘Med.-Chir. Review,’ 1863.—Harley, J., “Cyst. in the Brain,” ‘Lancet,’ 1867.—Hodges, R. M., “Specimens of Cyst. cell., felt as small tumours just beneath the skin, varying in size from that of a grain of rice to that of a coffee bean,” ‘Rep. of Boston Soc. for Med. Improvement,’ in ‘Brit. Med. and Surg. Journ.,’ 1857.—Hogg, J., “Obs. on Cysticercus,” in his ‘Manual of Ophth. Surgery,’ 3rd edit., 1863.—Holler, A., “Cyst. cell., im Gehirne einer Geisteskranken,” ‘Allgem. Wiener Med. Zeitung,’ 1878.—Logan, R., “Probable Cases of Cyst. cell.,” removed by Robertson, ‘Ed. Med. and Surg. Journ.,’ 1833.—Mackenzie, W., “Cyst in the Eye,” ‘Lancet,’ 1848, ‘Lond. Med. Gaz.,’ 1839.—Mazotti, L., “Caso di numerosi cisticerchi del cervello e delle meningi,” ‘Rivista Clin. di Bologna,’ 1876.—Mégnin, P., “La Ladrerie du porc et le Tænia solium,” ‘La France Médicale,’ 1876.—Putz, H., “Ueber die Lebenszähigkeit des Cysticercus cellulosæ,” &c., ‘Zeitsch. f. pr. Vet.-Wissenschaften,’ 1876.—Rainey, G., “On the Structure, &c., of Cyst. cell.,” ‘Phil. Trans.,’ 1857.—Rizzetti, G., “Rendiconto Statistico dell’ufficio d’igiene di Torino per l’Anno 1873.”—Rudall, J. T., “Cyst. in the Brain,” ‘Australian Med. Journ.,’ 1859.—Tartivel, De A., “Cysticerques multiples dans le tissu cellulaire sous-cutané et dans certain viscères,” ‘Rec. de Méd. Vet.,’ 1876.—Von Gräfe, A., in ‘Arch. für Ophthal.,’ 1857.—Wells, S., Bourman’s Case, ‘Ophth. Hosp. Rep.,’ 1860.—Windsor, J., “Cyst. in the Eye,” ‘Brit. Med. Journ.,’ 1861.
Tænia tenella, Cobbold.—I have long been acquainted with the fact that there is a comparatively small human tapeworm which cannot be referred to either of the foregoing species. In the absence of experimental proof, I incline to the belief that the worm in question owes its existence to measly mutton. The sheep harbours an armed Cysticercus (C. ovis), which I regard as the scolex of Tænia tenella. The specific name (tenella) was originally applied by Pruner to a cestode six feet in length, which he found associated with a larger tapeworm. This latter he called Tænia lata. Whilst Diesing has pronounced Pruner’s Tænia lata to have been a T. mediocanellata, I, on the other hand, consider Pruner’s T. tenella to have been a T. solium. Mr J. C. Mayrhofer has suggested its identity with Bothriocephalus tropicus. When, some years back, I applied the term T. tenella to a new tapeworm (of which I possess several strobiles) I was quite unaware than any similar nomenclature had been adopted by Pruner. From the few facts supplied by Pruner and Diesing, I cannot suppose that our cestodes are identical. Unfortunately my specimens are imperfect, wanting the so-called head. It is not possible to estimate the length of the worm accurately, but the perfect strobile must measure several feet.
On one slide I have mounted nine mature proglottides of a worm which I procured on the 15th Dec., 1875. The segments measure, on the average, exactly 1/10″ in length, and only 1/20″ in breadth. The uterine rosettes are all full of eggs, and their branches so crowded together that I am unable to ascertain their average number. The segments are perfectly uniform in character, their reproductive papillæ alternating irregularly at the margin.
In the autumn of 1872 I caused a lamb to be fed with the proglottides of a tapeworm which I referred to this species. The animal was slaughtered on the 22nd of January, 1873, when the result was stated to have been negative. As I had no opportunity of examining the carcase, I cannot feel quite sure that there actually were no Cysticerci present. On several occasions I have detected measles in the flesh of animals, when none were supposed to be present by those who either assisted me or were professional on-lookers. Assuming my Tænia tenella to be derived from the sheep’s Cysticercus, I think it fitting to describe the mutton measle in this place. Even if T. tenella be not actually the adult representative of the mutton measle (Cyst. ovis), it is quite certain that the scolex in question gives rise to an armed tapeworm, and it is almost equally certain that the adult armed cestode resides in man. In Pruner’s case, which is by no means unique, we have seen that two distinct species of cestode may coexist in the human bearer. It is quite possible that some one may yet have the good fortune to detect the beef tapeworm, the pork tapeworm, and the mutton tapeworm, all together in one and the same host.
On five separate occasions I have detected measles in “joints” of otherwise excellent and healthy mutton brought to my own table, and supplied by the family butcher. On several other occasions I have had these parasites brought under my notice; nevertheless, many persons are either unaware of, or actually deny, the existence of these ovine parasites. Thus, MM. Masse and Pourquier, in the ‘Montpellier Med. Journ.’ for Sept., 1876, make the following statement: “The sheep, not being subject to measles, it seems to us natural to employ the raw meat of that animal whenever it is required for nourishment in the treatment of diarrhœa, in weaning children, in phthisis, and for anæmics.” Clearly, if MM. Masse and Pourquier could have brought themselves to believe that English literature is worth consulting on such matters, they would not have made this statement. Incidentally they also observe, when speaking of beef measles:—“Un fait que nous avons remarqué et que nous tenons à signaler, c’est que nous avons trouvé des cysticerques nageant librement dans l’eau où nous avions plongé de la viande infestée de ladrerie.” Certainly this is a novel experience. That measles should not only get out of their cysts, but should have the power of “swimming freely” in the water is a phenomenon which requires explanation. There must have been some error of observation.
It was in the year 1865 that I discovered the mutton measle (C. ovis, mihi); but I am not prepared to say that the parasite had never been seen before, since it is alleged that a two-headed Cysticercus was obtained by Fromage from the liver of a sheep (as cited by Davaine). Be that as it may, my discovery was announced in a communication made at the Birmingham meeting of the British Association in the autumn of 1865, and subsequently at a meeting of the Pathological Society of London, on the 3rd of April, 1866 (‘Path. Trans.,’ vol. xviii, p. 463). After these dates further announcements and verifications appeared, amongst which I can only refer to my remarks “On Beef, Pork, and Mutton, in relation to Tapeworms,” forming an appendix to the first edition of my work on Tapeworms, 1866; to the “Remarks on Cysticerci from Mutton,” contained in the fourth chapter of the Supplement to my introductory treatise on Entozoa, where a figure of the parasite is given, 1869, p. 27; to Dr Maddox’s paper “On an Entozoon with Ova, found encysted in the Muscles of a Sheep,” recorded in ‘Nature,’ May 15th, 1873, p. 59; to the ‘Monthly Microscopical Journal,’ June, 1873, p. 245; to my further communications in the ‘Lond. Med. Record,’ Aug. 6th, 1873; to my ‘Manual,’ 1874, pp. 74 and 105, Ital. edit. ‘Nota Dell’ Autore,’ p. 133; and especially to the article headed “The Mutton Tapeworm,” contained in the 3rd edit. of my little volume on ‘Tapeworms,’ p. 12, et seq., 1875.
In regard to the measle itself, I spoke of it as smaller than the common pork measle. The head is 1/30″ in breadth, and is armed with a double crown of hooks, twenty-six in all, the larger hooks each measuring 1/160″ in length. The suckers are four in number, each having a breadth of 1/100″. The neck and head are abundantly supplied with calcareous corpuscles, being at the same time marked by transverse rugæ. The data on which I founded my brief description of the scolex were chiefly based on the examination of a specimen which had been procured by Prof. Heisch from the interior of a mutton chop. Subsequently much fuller details of the structure of the scolex were supplied by the illustrated memoir of Dr Maddox (above quoted). This excellent microscopist, however, announced the presence of immature ova within the Cysticerci themselves. As the notion of the existence of eggs in larval cestodes was altogether at variance with what we know of the phenomena of tapeworm life, I suggested that the author might have mistaken the egg-shaped calcareous corpuscles (which I found so abundant in my own specimens) for the ova. In the interests of truth I felt bound to characterise certain of the conclusions arrived at by Dr Maddox as simply incredible, but I regarded his memoir as forming “an important contribution to our knowledge of the structure of the mutton measle.” I had no idea that in pointing to errors of interpretation I should offend the excellent author. However, a long letter appeared in the ‘London Medical Record,’ in which Dr Maddox showed that he was much vexed that I should have “impugned” the “accuracy of his conclusions.” He defended his position with the support of no less an authority than Dr Macdonald, F.R.S., the distinguished Assistant Professor of Naval Hygiène at the Victoria Hospital, Netley. Dr Maddox says:— “We were quite alive to the anomalous position. Hence the exceptionability of the case rests on more than my own evidence.” In regard to this unfortunate dispute I will only add the expression of my conviction that Drs Maddox and Macdonald will eventually become satisfied that no cestode scolex is capable of displaying either mature or immature ova in its interior.
Bibliography (No. 15). Cobbold (l. c., supra), 1865–75.—Idem, “On Measly Meat, &c.,” the ‘Veterinarian,’ Dec., 1876.—Idem, “The Mutton Tapeworm (T. tenella),” No. 16 in my revised list of Entozoa, the ‘Veterinarian,’ Dec., 1874.—Diesing, C. M. (Tænia tenella, Pruner nec Pallas), in “Revis der Cephalocotyleen,” ‘Sitzungsb. der Math.-Mat. Class d. k. Akad. der Wissenschaften,’ Bd. xlix, s. 369, 1864.—Maddox (l. c., supra), 1873.—Mayrhofer, J. C., ‘Die helminth. des Menschen,’ Erlangen, 1854.—Pruner, ‘Krankheiten des Orients,’ s. 245, 1847.
Tænia lophosoma, Cobbold.—This is a good species notwithstanding the doubts that have been expressed by Heller and others regarding it. I have called it the ridged tapeworm in consequence of the presence of an elevated line coursing the whole length of the body, which measures about eight feet. The reproductive papillæ are remarkably prominent and uniserially disposed throughout the entire chain of proglottides. It is quite an error to suppose that this species is a malformed cestode, or that it has any resemblance to Küchenmeister’s variety of tapeworm from the Cape of Good Hope. Neither does it in the slightest degree resemble the remarkably malformed T. mediocanellata described by Mr Cullingworth. Of the distinctiveness of this parasite as a species, any one may satisfy himself by an inspection of the nearly complete strobile preserved in the Pathological Museum attached to the Middlesex Hospital Medical College. From the examination of several mature proglottides detached from this specimen, I find their average breadth to be one fifth of an inch, by three quarters of an inch in length. Their greatest thickness does not exceed the 1/13th of an inch. The eggs resemble those of other tapeworms, and offer a diameter of about 1/850″ from pole to pole.
Bibliography (No. 16).—Cobbold, “Parasites of Man,” in the ‘Midland Naturalist,’ April, 1878, p. 98.—Idem, ‘Tapeworms,’ 1st edit., p. 52, 1866; 3rd edit., p. 27, 1875.—Cullingworth (see Bibl. No. [18]).—Davaine, ‘Les Cestoïdes,’ l. c., p. 573.—Heller, l. c., s. 594.
Tænia nana, Siebold.—As regards the dwarf tapeworm, unless Spooner’s case be genuine, there is but one solitary instance on record of its occurrence in the human body; moreover, we have no evidence of its having existed in any other host. It was discovered by Dr Bilharz, of Cairo, at the post-mortem examination of a boy who died from inflammation of the cerebral membranes. Prodigious numbers existed. The largest specimen measured only one inch in length. To the naked eye these worms resemble short threads, and consequently they might very readily be overlooked. The head is broad and furnished with a formidable rostellum armed with a crown of hooks. These hooks have large anterior root-processes, which, extending unusually forward, impart to the individual hooks a bifid character. By far the best account of this worm is furnished by Leuckart, to whom I am indebted for a specimen.
Bibliography (No. 17).—Cobbold, ‘Entozoa,’ p. 244.—Davaine (l. c., Bibl. No. 2), p. 574.—Heller, l. c., s. 606.—Küchenmeister, l. c., Eng. edit., p. 141.—Leuckart, l. c., Bd. i, s. 393.—Von Siebold and Bilharz, in Von Sieb. and Köll. Zeitschr., Bd. iv.—Spooner, ‘Amer. Journ. Med. Sci.,’ 1873.—Van Beneden, ‘Iconographie,’ l. c., pl. iii, fig. 17.—Weinland, ‘Diplacanthus nanus,’ l. c., p. 85.
Tænia Madagascariensis, Davaine.—This appears to be a well-defined species although the head has not yet been seen. It probably forms the type of a distinct genus. Dr Grenet, stationed at Mayotte (Comores), twice encountered single specimens passed by two young children, eighteen and twenty-four months of age respectively. The proglottides have their genital pores uniserially arranged, and they show, in their interior, remarkable egg-capsules, from 120 to 150 in number in all, each containing from 300 to 400 eggs. These give a long diameter of 1/625″ for the outer envelope and 1/1250″ for the inner, or shell proper. The embryo measures only the 1/2500 of an inch.
A full account of this parasite, with figures, is given by Davaine (‘Les Cestoïdes,’ l. c., Bibl. No. 2, p. 577 et seq.).
Tænia marginata, Batsch.—Although I possess no certain evidence of the occurrence of this parasite in its adult condition in the human bearer, yet there is a tapeworm in the Edinburgh Anatomical Museum referable to this species, which was said to have been obtained from the human body. This worm is very common in the dog.
The principal evidence demonstrating the occurrence of the larval representative of this species (Cysticercus tenuicollis) in man, rests upon the two cases recorded in Schleissner’s ‘Nosography’ of Iceland. One of the alleged instances, however, has been proved by Küchenmeister and Krabbe to be that of an echinococcus; so that, after all, there only remains the solitary case observed by Schleissner himself, in which the parasite can fairly be considered as the “slender-necked hydatid.”
To the above, however, may probably be added a specimen preserved in the Anatomical Collection at King’s College, London. It was found connected with an ovarian cyst.
Tænia elliptica, Batsch.—This parasite is readily recognised not merely by its delicate form and small size, but also by the circumstance of its supporting two sets of reproductive organs in each mature joint. Their outlets are situated at the centre of the margin of each segment, one on either side. Ordinarily infesting the cat, this worm is a mere variety of the common Tænia cucumerina of the dog. At all events, from the evidence put forth by Eschricht, seconded by Leuckart, there is every reason for believing that one or other of these closely-allied varieties is liable to infest the human body. It was originally stated by Eschricht that he had received a Tænia canina which had been passed by a negro slave at St Thomas, Antilles. This is a synonym of T. elliptica, which must therefore be very rare in the human body, possibly only occurring in the negro race.
In regard to the source of this parasite, it has been shown by Melnikow that the scolex of Tænia cucumerina resides in the louse of the dog (Trichodectes latus), and thus it is exceedingly probable that the scolex of Tænia elliptica resides in the louse of the cat (Trich. subrostratus). How man becomes infested is not so clear. Melnikow’s paper on the juvenile state of this cestode is contained in the ‘Archiv für Naturgeschichte’ for 1869, and is illustrated by a figure of the measle.
Tænia flavopuncta, Weinland.—Regarded as a new species, the discovery of this little tapeworm is due to the investigations of Weinland. In Dr Jackson’s ‘Catalogue of the Boston Medical Improvement Society’ an account of the contents of a phial is recorded as follows:—“Specimen of Bothriocephalus, three feet in length, and from half a line to one line and a quarter in width, from an infant. The joints are very regular, except at one extremity, where they approach the triangular form, are very delicate, and but slightly connected, as shown in a drawing by Dr Wyman.” It is further stated that the infant was nineteen months old, and that the worm was discharged without medicine, its presence having never been suspected. It was presented by Dr Ezra Palmer in the year 1842. On examining the fragments, Dr Weinland found, instead of a solitary specimen, at least six different tapeworms, all of them being referable to a hitherto undescribed species. There were no heads; nevertheless, it was ascertained that the worms varied from eight to twelve inches in length, the joints or segments being very broad, and at the same time narrowed from above downwards. The parasite was named “the spotted tapeworm,” in consequence of the presence of yellow spots near the middle of the joint. They represent the male organs of reproduction, the outlets of which, as in my T. lophosoma, occur all along one side of the body or strobile. In Weinland’s estimation this parasite forms the type of a new genus which he calls Hymenolepis. A full account of the worm is given in his well-known essay (l. c., Bibl. No. 2).
Tænia abietina and other varieties. I can only notice very briefly certain cestodes which either present malformations or which may be regarded as mere varieties. First in this series is Weinland’s T. abietina. No one who has studied his ‘Beschreibung zweier neuer Tænioiden aus dem Menschen,’ Jena, 1861, can doubt that it is a mere variety of T. mediocanellata. The monstrosity described by him as referable to T. solium must also be referred to the beef tapeworm. The variations in the character of cestode proglottides is practically infinite. A museum might be filled with them. Most common with T. mediocanellata, these varieties more or less prevail with other species. Thus I have seen them in Tæniæ and Bothriocephali alike. I have obtained segments of T. mediocanellata having sexual outlets on both sides of the proglottis, so regularly disposed in a few segments as to suggest the notion of a new species. The coalescence of several segments into one compound segment is frequent, but the most remarkable specimen that I have seen is one contained in the museum of the Royal College of Surgeons. In the old Hunterian catalogue the specimen is described as “two joints of the Tænia solium, with a number of orifices in unequal series on either side.” As stated in the new catalogue of the series, prepared by myself, the “lower segment is furnished with twenty-two sexual orifices, one of which is situated in the central line” on the ventral surface (as in Bothriocephali). References to this and other specimens in the Hunterian Collection will be found below (see Pittard). In regard to Weinland’s conjectural Tænia acanthotrias, based on the circumstance of his having found a Cysticercus that presented three rows of hooks on its rostellum, I need only say that if such a Tænia were found it would only turn out to be a malformed T. solium. The specimens, however, are none the less interesting. Very remarkable and altogether exceptional characters are presented by the strobile of the cestode described by Mr Cullingworth, of Manchester, and of which I possess specimens. Here, apparently, at least two tapeworms are joined together throughout the entire chain of proglottides without intermission. The three margins of each compound segment project at equi-distant angles. Could we have secured the head we should certainly have found six or eight suckers present, since the finest neck-segments showed that the malformation pervaded the entire colony of zooids, sexually mature and otherwise. Mr Cullingworth’s specimen is so remarkable that I subscribe full particulars of the case in his own words. He says:—“A respectable married woman, named Ann H—, forty years of age, residing in Salford, brought to my out-patient room at St Mary’s Hospital, Manchester, on September 3rd, 1873, a few segments of tapeworm as a sample of what she had been passing per anum for about two years. Although never in the habit of taking meat absolutely raw, she told me, on inquiry, that she was particularly fond of tasting it when only partially cooked. The segments were unlike anything I had seen before, and I took them home for examination, ordering the patient meanwhile a draught containing a drachm of the oil of male fern, and giving her strict injunctions to bring to me every fragment that passed away as a result.
“On September 17th she brought me portions of a tapeworm corresponding throughout to the segments I had already seen, and measuring altogether nine feet in length. Unfortunately, the head was not to be found. Along the middle line of every segment in the body a crest or ridge runs longitudinally, and in the centre of the margin of this crest the genital pore is situated. [In 304 segments examined, only four had the genital opening placed laterally. One segment had two openings, viz. one at the lateral margin and the other in the crest.] Underneath the segment there is a longitudinal groove, and the lateral portions are folded together by the apposition of their under surfaces. When hardened in spirit the section of a segment presents a three-branched appearance, the branches being of unequal length, but placed at equal angles. The uterus sends vessels into the crest as well as into the sides of the segment; and the contained ova are exactly like the ova of an ordinary Tænia mediocanellata. Wedged in between, or attached to, the segments here and there, is a stunted and ill-shaped joint, with irregular and unequal sides. A mature joint measures from five eighths of an inch to three quarters of an inch in length, and about half an inch in breadth, and the breadth or depth of the crest is usually one eighth of an inch.
“There are only two specimens that I can find on record at all similar to the one here described, and both of these differ from it in several important particulars. Küchenmeister mentions, as a variety of Tænia mediocanellata, a tapeworm sent to him from the Cape of Good Hope by Dr Rose. This worm possessed a longitudinal ridge, but he describes its mature segments as ‘extremely massive’—more than an inch in length and 3/5″ in breadth. The genital pores, too, were irregularly alternate, and not situated on the crest. On March 20th, 1866, Dr Cobbold exhibited to the Pathological Society of London a specimen of crested tapeworm which was discovered in the museum of Middlesex Hospital, and to which he proposed to give the name Tænia lophosoma (λόφος, crest; σῶμα, body). The reproductive papillæ were all on one side of the chain of segments, a peculiarity which entirely distinguished it from the Cape of Good Hope variety of Küchenmeister. The head of the creature was wanting. It will thus be seen that my specimen does not correspond with either of these in the situation of the genital aperture. Here it is placed in the crest itself, and not unilaterally, as in Dr Cobbold’s specimen, or alternately, as in Küchenmeister’s. It further differs from the Cape variety in the more moderate dimensions of its proglottides. I have adopted, however, the name suggested by Dr Cobbold in the communication referred to, inasmuch as it sufficiently indicates the principal distinguishing feature of the specimen. I may mention that Dr Cobbold saw the specimen during his visit to Manchester, and that he regarded it as a most remarkable and unique abnormality.”
Further, in connection with abnormal cestodes, I may observe that Weinland’s case of a triple-crowned Cysticercus does not stand alone, since a similar specimen is, I believe, in the possession of the Rev. W. Dallinger. This was removed from the human brain. Curious as this subject is, I cannot dwell upon it. Not only are the mature tapeworms and their Cysticerci liable to present monstrosities, but even also their proscolices or six-hooked embryos. Thus, twelve hooks were observed by Salzmann in the embryo of T. elliptica, and Heller also figures two embryos of T. mediocanellata (T. saginata, Gœze) with numerous hooklets. Dujardin saw seven in a Bothriocephalus embryo. Occasionally there have been errors of interpretation made by observers. Thus, Diesing has given beautiful figures of Dibothrium hians in such a way as to suggest different degrees of monstrosity affecting the tail end of the strobile; but this splitting has clearly resulted from injury. Thus also, when I removed five specimens of a new cestode (Diphyllobothrium stemmacephalum) from the intestines of a porpoise, one of them was cleft nearly half way up the strobile. This had been done by the scissors employed in slitting up the gut; but owing to perfect contraction of the incised edges, it was some time before I discovered that the apparent monstrosity had been artificially produced. Lastly, I may add that many of the older writers were well acquainted with larval and other anomalies. Thus Rudolphi described a two-headed Cysticercus from a Lemur, and also a double-headed Tænia crassicollis. This worm had a tripartite body; as had likewise a Tænia crassicollis of which he did not possess the head (corpore prismatico). Other monstrosities were described and figured by Bremser and Creplin. Pallas mentions a two-headed Tricuspidaria (Triænophori nodulosi bicipites), and, as already stated at p. [97], a double-headed Cysticercus has been obtained from the liver of a sheep.
Before quitting the Tæniæ proper, I may observe that several other species have been indicated, based on ovular and other insufficient characters. To these belong Ransom’s supposed tapeworm, and also Weinland’s Tænia megaloön.
Bibliography (No. 18).—Bonnet, C., ‘Œuv. Compl.,’ tom vi, p. 191, 1791.—Bremser, Atlas, by Leblond, Pl. iv.—Chaussat, ‘Comptes Rendus,’ p. 20, 1850.—Cobbold, ‘Catalogue of the specimens of Entozoa in the Museum of the Royal College of Surgeons of England,’ Nos. 118–121, London, 1866.—Idem, ‘Worms,’ l. c., p. 78.—Idem, “On a Cysticercus from the Human Brain,” ‘Brit. Assoc. Rep.,’ 1870.—Creplin, ‘Tænia Monstrum, &c.,’ Berlin, 1839.—Cullingworth, C. J., “Notes on a remarkable specimen of Tapeworm (Tænia lophosoma, Cobbold),” ‘Med. Times and Gaz.,’ Dec., 1873.—Davaine, ‘Les Cestoïdes,’ l. c., p. 570.—Diesing, ‘Zwanzig Arten von Cephalocotyleen,’ figs. 1 and 2, taf. ii (aus dem xii, Bd. d. denkschr. d. Math.-nat. Cl. d. k. Akad.), Wien, 1856.—Dujardin, l. c., p. 619.—Heller, l. c., s. 600.—Küchenmeister, l. c., Eng. edit., p. 139.—Leuckart, l. c., s. 303 and 465.—Levacher, ‘Journ. l’Institut,’ p. 329, 1841.—Pittard, S. R., Remarks in his article “Symmetry,” Todd’s ‘Cyclop.,’ vol. iv, p. 848, 1849–52, in which he refers to a monstrous Bothriocephalus (T. lata) in the Hunterian Museum, old ‘Catalogue of Nat. Hist.,’ pl. iv, p. 50, No. 205; see also my ‘Catalogue,’ l. c., supra, No. 167.—Ransom, in Reynolds’ ‘System of Medicine.’—Rudolphi, ‘Synops.,’ p. 545 and 598–9, with fig. showing the heads of Cystic. Simiæ (biceps), widely apart, 1819.—Weinland (T. megaloön), in Zoolog. Garten, Frankf., 1861, s. 118.—Idem, ‘Essay,’ l. c., p. 11.
Fig. 25.—Head and neck of Bothriocephalus latus. a, Front view. The smaller figure represents the head as seen from the side. After Knoch.
Bothriocephalus latus, Bremser.—This species, though seldom seen in England, is sometimes brought hither by persons who have been residing for a time in foreign countries. It is indigenous in Ireland, and, though by no means common there, has been called the Irish Tapeworm. As regards its distribution in Europe it is much more prevalent in some districts than in others. On this point Leuckart remarks that “foremost amongst these are the cantons of West Switzerland, with the adjacent French districts. In Geneva, according to Odier, almost a fourth part of all the inhabitants suffer from Bothriocephalus. It is also common in the north-western and northern provinces of Russia, in Sweden, and in Poland. In Holland and Belgium it is likewise found, but, on the whole, not so frequently as in the first-named countries. Our German fatherland also harbours them in some districts, especially in eastern Prussia and Pomerania, and there have appeared cases in other places, as in Rhenish Hesse, Hamburg, and even in Berlin; these being apparently spontaneous instances.”
Unlike the ordinary tapeworms, the segments of the broad tapeworm do not individually separate so as to become independent organisms, a circumstance which is highly favorable to the bearer. Its remarkable breadth, and the extremely numerous and closely-packed proglottides, impart a sufficiently distinctive character; but this parasite may be more fully characterised as the largest human cestode at present known, attaining a length of more than twenty-five feet, and sometimes measuring nearly an inch in breadth; the so-called head 1/25″ in width, bluntly pointed at the tip, much elongated or club-shaped, slightly flattened from behind forwards, and furnished with two laterally disposed slit-like fossæ or grooves, but destitute of any armature: anterior or sexually-immature segments of the body extremely narrow, enlarging in a very gradual manner from above downwards; joints of the lower half of the body gradually decreasing in width, but enlarging in depth; sexually-mature segments usually about 1/8 of an inch in depth, but those near the caudal extremity frequently 1/4″, and quadrate in form; body flattened, but not so uniformly as obtains in the ordinary tapeworms, being rather thicker near the central line; total number of joints estimated at nearly 4000, the first sexually-mature ones being somewhere about the six hundredth from the head; reproductive orifices at the central line, towards the upper part of the segment at the ventral aspect, the vaginal aperture being immediately below the male outlet, and both openings surrounded by papillæform eminences; uterus consisting of a single tube, often seen regularly folded upon itself, forming an opaque, conspicuous, centrally-situated rosette; eggs oval, measuring 1/350″ in length by 1/550″ in breadth, having three shell-coverings, and a lid-like operculum at one end, as occurs in the fluke-worms. Owing to the dark color of the egg shells, the uterine rosette is readily seen by the naked eye as a conspicuous deep brown spot at the centre of each successive segment.
Fig. 26.—Proscolex, or six- hooked embryo of Bothriocephalus, escaping from its ciliated covering. After Leuckart.
The source and development of this parasite are points of considerable interest. The eggs are of comparatively large size, and after expulsion and immersion in water they give passage to beautifully ciliated embryos, which latter produce larvæ furnished with a boring apparatus. These larvæ resemble the six-hooked embryos of other tapeworms. In what animals the larvæ subsequently develop themselves is not ascertained with certainty, but it is probable that persons become infested by eating imperfectly cooked fresh-water fish. Leuckart has suggested that the intermediary bearers are species of the salmon and trout family. Dr Knoch, of Petersburg, thought that there was no need of the intermediate host. He believed that he had succeeded in rearing young broad tapeworms in the intestines of dogs. It was Leuckart who first explained the source of Knoch’s errors of interpretation. Although Knoch administered eggs of Bothriocephalus latus to dogs, and afterwards found young tapeworms of the species in question in the intestines of the dogs, it did not logically follow that any genetic relation (as between the egg-contents and the adult worms) had been thereby established. The circumstance that ripe ova of the Bothriocephalus always contain six-hooked embryos, must alone imply that an intermediate host is necessary for the formation of Cysticerci or measles. If the broad tapeworm could be reared in a direct manner by the administration of Bothriocephalus eggs, there would be no need for the presence of boring hooklets in the proscolex. These are necessary for invading the flesh of some intermediate host.
Dr Fock, of Utrecht, has sent me particulars of an interesting case, and he suggests that infection comes from the little river bleak (Leuciscus alburnus). Writing from Utrecht in December, 1877, Dr Fock, after referring to a former case, goes on to say:—“Permettez moi, cher confrère, que je rappelle à votre souvenir que vous avez eu l’obligeance de communiquer au public une observation, de ma main, sur un cas très rare de ver rubanaire, d’un Bothriocephale, chez une petite fille juive. Malheureusement je n’ai pu en donner de plus amples détails, parce que cette enfant n’a plus, depuis ce temps-là, rendu la plus petite parcelle de ver. Il y a maintenant quinze mois, et voilà que de nouveau un cas pareil se présente. Une femme mariée, frisonne, et, cette fois-ci encore, juive, s’est adressée à moi pour la débarasser de son ver. Elle me disait avoir rendu, il y a quelque temps, des fragments, ou plutôt un fragment de la longueur d’un mêtre, d’un ver solitaire, pour lequel elle avait été traitée, sans succès, par son médecin ordinaire. A cause de cela elle s’adressa à moi, et je lui ai repondu qu’elle devrait revenir la première fois qu’elle rendrait de nouveau, spontanément, un nouveau fragment. Après un mois d’intervalle elle est revenue en me montrant un fragment de la longueur d’un demi-mêtre qu’elle venait de rendre spontanément, après avoir jeûni par précepte réligieuse, et deux jours après cela, traitée par l’écorce de grenadier, elle a rendu un Bothriocephale parfaitement conditionné en entier.
“Ce cas me semble assez intéressant pour être communiqué de nouveau, d’abord parce que jusqu’ici personne n’a pu dire par quel chemin a pu s’introduire un tel helminthe, et ensuite parce que ce chemin doit se présenter bien rarement dans nos contrées (ou en Angleterre) puisque dans le courant d’une trentaine d’années ayant rencontré des centaines de tænias, ce cas-ci est seulement le second dont je suis gratifié. Il me semble digne de réflexion que ce cas-ci se présente cette fois-ci de nouveau chez une juive. Est ce cas-ci fortuit, ou bien y-a-t’il un lien de causalité entre ce ver rare et le genre de nourriture ou de boisson de ces bonnes gens? La dame me recontait que, en Frise, il y a un poisson très recherché qui s’appelle en Hollandais blèck, en Anglais blay ou bleak, et dont ils sont très friands, dans lequel, ils rencontrent très souvent un très grand ver rubanaire. Une autre personne me disait avoir été à table chez un ami, qui ne sachant probablement ce qu’il mangeait, savoura avec beaucoup de délice cette friandise dégoutante.”
After describing the specimen, Dr Fock concludes his remarks with a suggestion as to the possibility of introducing tapeworm into the human body by potable water, into which Cysticerci have accidentally found their way. Dr Fock remarks:—“J’ajoute une réflexion par rapport à la provenance des autres tænias, qui jusqu’ici sont introduits par l’usage de la viande non assez cuite ou rôtie, ou saignante; mais, ne se pourrait-il pas que des débris de la chair d’un animal ladre fussent introduits fortuitement dans l’eau, par example, d’un fossé, et que celle-ci employée comme boisson contint des Cysticerques et par ainsi aussi une cause de Tænia? Ce n’est qu’une conjecture que je propose en terminant cet article.”
Fig. 27.—Strobile of Bothriocephalus cordatus. After Leuckart.
Although I cannot at all agree with Dr Fock in regarding water as a source of infection in the manner he indicates, yet the still more recently expressed opinions of MM. Bertolus and Duchamp, based on experimental researches, render it tolerably certain that Leuckart’s original surmise was correct, and that we must look to freshwater fishes for the larvæ of the broad tapeworm. In the section of this work devoted to the parasites of fishes I shall make particular allusion to the experiences of Dr Bertolus; but as confirming the view of Leuckart I may here observe, that Bertolus has almost proved that the so-called Ligula nodosa infesting the common trout is merely a sexually incomplete example of Bothriocephalus latus. The bleak (Leuciscus alburnus) shares with other freshwater fishes the privilege of harbouring a species of Ligula (L. digramma); but whether this form bears any genetic relation to our human Bothriocephalus latus can only be determined by actual experiment. If, as Duchamp and others have either indicated or implied, Ligula alburni is a synonym of the bleak’s cestode in question, then it is evident that the sexually mature form of the Ligula of the bleak is the well-known L. simplicissima of many water birds and of a few other avian species. Probably the bleak-eaters of Holland consume many kinds of freshwater fishes, including various species of the salmon and trout family.
The symptoms occasioned by Bothriocephalus latus do not differ materially from those produced by other tapeworms. According to Odier, as quoted by Davaine, there is not unfrequently a tumid condition of the abdomen, with sickness, giddiness, and various hysterical phenomena occurring at night. Pain in the region of the heart, palpitations, and faintness are also mentioned.
As already hinted, this cestode is very liable to present abnormalities of structure, the proglottides frequently displaying double sexual orifices, with corresponding duplication of the reproductive organs internally. For details respecting the anatomy of Bothriocephalus I must refer to the works of Küchenmeister and Leuckart; and more particularly to the memoir of Drs F. Sömmer and L. Landois, who have supplemented the previous researches of von Siebold, Leuckart, Böttcher, Stieda and others by beautiful investigations of their own. In the pages of ‘Nature,’ for 1872, I gave a résumé of Sömmer’s memoir, which will be found quoted below.
Fig. 28.—Head of Bothriocephalus cristatus, viewed from the front. After Davaine.
Bothriocephalus cordatus, Leuckart.—This species is identical with a worm long ago described by Pallas and Linneus. At present it is only known to infest the residents of North Greenland, but it is probably distributed throughout the north generally. It attains the length of about one foot, and has a small heart-shaped head, whose apex is directed forwards. The neck is so obscure that it may be said to be altogether wanting, the segmentation of the body being well marked immediately below the head. Though so small a species, Leuckart, who first described it, counted between six and seven hundred joints. As in the broad tapeworm, the reproductive orifices are serially disposed along the centre of the ventral line, but a close inspection shows that the folds of the egg-bearing organ are comparatively more numerous. This worm does not appear to be a frequent resident in the human body, though it is by no means uncommon in the dog. Possibly it may yet be found in the inhabitants of some of our northern and western isles.
Bothriocephalus cristatus, Davaine.—This cestode measures between nine and ten feet in length, and is characterised by the presence of two remarkable prominences, together forming a sort of rostellum or crest which is covered by numerous minute papillæ. The full-grown segments are less than half an inch in breadth; the body of the parasite being narrower than that of the broad species. The original description of the parasite by Davaine is based on two specimens, one of which, quite perfect, was obtained from a child five years old, under Dr Féréol’s care at Paris. The other was passed spontaneously by an adult residing at Haute-Saône. I have here copied one of Davaine’s original figures of the head of the worm.
Bibliography (No. 19).—Bertolus, “Mém. sur le development du Dibothrium latum” (in Appendix to Duchamp’s work, see Bibliog. No. 59).—Blanchard, “Recherches, &c.,” ‘Ann. des Sci. Nat.,’ ser. 3, Zool., Pl. 11, 12, 1848.—Böttcher, “Studien ueber den Bau des Both. latus,” ‘Virchow’s Archiv,’ s. 97 et seq, 1864.—Bremser, l. c., Bibl. No. 1, s. 88, 1824.—Chiaje, ‘Compendio, &c.,’ Tab. iii, figs. 1–5, 1833.—Cobbold, ‘Entoz.,’ p. 289, 1864.—Idem, “Remarks on the Broad Tapeworm” (with a letter from Dr Fock), the ‘Veterinarian,’ July, 1878.—Creplin, in Ersch and Gruber’s ‘Encyclop.,’ 1839, p. 296.—Davaine, ‘Traité,’ l. c., 1860; 2nd edit. (passim), 1877.—Idem, art. ‘Les Cestoïdes,’ l. c., Bibl. No. 2, p. 580–591, 1876.—Dujardin, l. c., Bibl. No. 1, p. 612, 1845.—Eschricht, D. F., ‘Anat-physiol. Untersuchungen ueber die Bothriocephalen,’ Breslau, 1840.—Fock (see Cobbold).—Heller, ‘Darmschmarotzer,’ l. c., s. 606, 1876.—Knoch, ‘Petersburger Med. Zeitschrift,’ 1861.—Idem, ‘Die Naturgeschichte des breiten Bandwurms (B. latus, auct.),’ St Petersburg, 1862.—Küchenmeister, ‘Ueber cestoden,’ l. c., 1853.—Leuckart, ‘Die Blasen Bandwürmer,’ 1856.—Idem, ‘Die mensch. Par.,’ Bd. i, s. 414–448, und 757, 1863; and Bd. ii, s. 866, 1876.—Owen, Todd’s ‘Cyclop.,’ 1837.—Sömmer und Landois, aus Sieb. und Köll. Zeitschr., ‘Beiträge zur Anatomie der Plattwürmer,’ Leipsig, 1872; see also the résumé in ‘Nature’ for Aug., 1872, p. 278.—Wawruch, ‘Pract. Monograph. d. Bandwürm-Krankheit,’ 1844, s. 33.
Fig. 29.—Tænia echinococcus Strobile. Mag. 30 diam. Original.
Echinococcus hominis (the common hydatid).—This larval entozoon has acquired various names according to the kind of bearer in which it happens to have been found; but all the true hydatids or acephalocysts, whether infesting man or animals, are referable to one and the same species of parasite. They have been termed Echinococcus hominis, E. veterinorum, E. polymorphus, E. exogena, E. endogena, E. multilocularis, according to circumstances. All of them represent a juvenile stage of the Tænia echinococcus or hydatid-forming tapeworm which infests the dog and wolf. Experimental proof of this fact has been furnished by Von Siebold (1852), Haubner, Leuckart, Küchenmeister, Van Beneden, Naunyn, Nettleship, Krabbe, and others.
The first successful rearing of Tæniæ with human hydatids was accomplished by Naunyn (1864), his results being subsequently verified by Krabbe and Finsen (1865). Zenker, Ercolani, and several others, including myself, also conducted feeding experiments with human hydatids which were attended with negative results. In the case of one of my experimental dogs the animal was liberated by an ill-disposed person before I had opportunity to destroy it. As the experiment was carefully conducted, the animal may have proved a source of fresh echinococcus-infection. Mr E. Nettleship’s eminently successful experiment was made with hydatids obtained from a sheep. The converse experiment, namely, that of rearing hydatids with the mature proglottides of Tænia echinococcus administered to animals, has been performed most successfully by Leuckart, and by Krabbe and Finsen; by the former in the pig, by the latter in a lamb, with tapeworms that had also been reared by experiment. Zenker, later on, reared the Tænia from hydatids obtained from an ox.
The sexually mature Tænia echinococcus may, for the purposes of diagnosis, be characterised as a remarkably small cestode, seldom reaching the fourth of an inch in length and developing only four segments, including that of the head; cephalic extremity capped by a pointed rostellum, armed with a double crown of comparatively large-rooted hooks, from thirty to forty in number; the four suckers prominent, and succeeded by an elongation of the segment forming the so-called neck; final segment, when sexually mature, equalling in length the three anterior ones; reproductive papilla at the margin of the proglottis rather below the central line; proscolex or embryo giving rise to the formation of large proliferous vesicles, within which the scolices or echinococcus-heads are developed by gemmation.
When an animal is fed with the mature proglottides of Tænia echinococcus the earliest changes that take place are the same as obtain in other cestodes. The segments are digested; the shells of the ova are dissolved; the six-hooked embryos escape. The embryos bore their way into the organs of circulation, and thence they transfer themselves to the different organs of the host; being especially liable to take up their abode in the lungs and liver. Having arrived at this, their resting stage, the embryos are next metamorphosed into hydatids. According to Leuckart’s investigations the juvenile hydatid is spherical at the earliest stages; being surrounded by a capsule of connective tissue formed from the organs of the host. After removal from its capsular covering, the vesicle consists of a thick laminated membrane, forming the so-called cuticular layer, and a central granular mass, which subsequently becomes enveloped by a delicate granular membrane. At the fourth week the echinococcus capsule measures about 1/25″ in diameter, its contained hydatid being little more than half this size. Its future growth is by no means rapid, seeing that at the eighth week the hydatid has attained only the 1/15″ in diameter. At this period the central granular mass develops a number of nucleated cells on the inner surface of the so-called cuticle. These cells, which at first are rounded or oval, become angular or elongated in various directions, and even distinctly stellate; and in this way a new membrane is formed, constituting the so-called inner membrane or granular layer. The intermediate stages between this condition and that of the fully-formed echinococcus hydatid have not been satisfactorily traced in detail; nevertheless, Krabbe and Finsen’s experiment on a lamb showed that within a period of little more than three months well-developed echinococcus-heads may be formed in the interior of the vesicles. It is thus clear that the production of scolices immediately follows the formation of the granular layer, and this is succeeded, though not invariably, by the formation of daughter- and grand-daughter-vesicles, which are sometimes termed “nurses.” These latter may be developed exogenously or endogenously.
Fig. 30.—Ectocyst, endocyst, and brood capsule of Echinococcus. From a Zebra. After Huxley.
The appearance of hydatids varies very much according to their mode of formation, to the kind of host in which they are present, and to the character of the organs in which they happen to take up their residence. The so-called exogenous type occurs sparingly in man, whilst the endogenous type is very abundant. The peculiar form known as the multilocular echinococcus is probably a mere variety of the exogenous type. The exogenous and endogenous hydatids may coexist in the same bearer. In the lower animals we commonly find the organs of the body occupied by numerous lobulated cysts, varying in size from a walnut to a goose’s egg, but sometimes rather larger. They are rarely solitary, being particularly liable to occupy both the liver and lungs in the same animal. The viscera are sometimes crowded with cysts. The hydatids do not usually protrude much beyond the surface of the infested organ, but lie imbedded within its parenchymatous substance.
The multilocular variety was first described by Virchow. In reference to it Leuckart writes as follows:
“Hitherto we know this growth only from the liver, in which it forms a firm, solid, and tolerably rounded mass of the size of the fist or even of a child’s head. At first sight it looks more like a pseudoplasm than a living animal parasite. If you cut through the tumour, you recognise in its interior numerous small caverns, mostly of irregular shape, and separated from one another by bundles of connective tissue, more or less thick, and including a tolerably transparent jelly-like substance. In the intervening stroma a blood-vessel or a collapsed bile-duct runs here and there; but there is nowhere any trace of true liver substance. The outer boundaries of the tumour are in most cases pretty well defined, so that the attempt to cut these growths out is not difficult. In particular spots, especially at the surface, one sometimes sees white, moniliform, jointed lines passing off from the tumour, and even thicker terminations which, perhaps, expand in the neighbouring liver-parenchyme into new (multilocular) groups of different size. In one case, recorded by Virchow, the growth extended, together with Glisson’s capsule, a long way towards the intestine.” To this description it may be added, that the growth on section presents an appearance not altogether unlike alveolar colloid, having, in point of fact, been confounded with that pathological product, with which, however, as stated by Virchow, it has nothing in common. This is proved not only by the occurrence of the pathological features above mentioned, but also, more particularly, by the well-ascertained presence of echinococcus-heads in most of the so-called alveoli. Several hypotheses have been broached with the view of explaining the mode in which these multilocular hydatid growths are formed. Virchow thought that the echinococcus vesicles were primarily formed in the lymphatic vessels, whilst Schröder van der Kolk supposed that they originally took up their abode in the biliary ducts. Although, thanks to the courtesy of Professor Arnold Heller in giving me a specimen, I have been enabled to confirm much that has been written in respect of the morbid appearances, I can add nothing towards the solution of the difficulty in question. Until lately it was supposed that the multilocular variety of hydatids only existed in man, but Professor Böllinger has encountered it in the liver of a calf.
| Fig. 31.—Group of Echinococcus-heads, from an hydatid found in the liver of a sheep. Magnified about 25 diameters. From a drawing by Professor Busk. |
| Fig. 32.—Three brood-capsules, containing Echinococcus-heads. Magnified 76 diameters. After Professor Erasmus Wilson. |
Selecting any ordinary fresh example of the exogenous kind, and laying the tumour open with a scalpel, we notice in the first instance an escape of a clear transparent, amber-coloured fluid. This previously caused the distension of the sac. If the tumour is large, this escape will probably be followed by a falling in, as it were, of the gelatiniform hydatid membrane, in which case the inner wall of the external adventitious investment or true fibrous cyst will be laid bare. If the hydatid be next withdrawn from the cyst, it will be seen to display a peculiar tremulous motion, at the same time coiling upon itself wherever there is a free-cut margin. Further examination of portions of the hydatid will show that we have two distinct membranes; an outer, thick, laminated, homogeneous elastic layer (the ectocyst of Huxley), and an internal, thin, soft, granulated, comparatively inelastic layer—the endocyst of the same author. The terms are convenient. The ectocyst is structureless, consisting of a substance closely allied to chitine. For this and other reasons it has been called the cuticular layer, but the endocyst is the essential vital part of the animal, representing a huge compound caudal vesicle. In an hydatid from the zebra, Huxley found that the endocyst was “not more than 1/2000th of an inch in thickness, being composed of very delicate cells of 1/2000″ to 1/5000″ in diameter, without obvious nuclei; but often containing clear, strongly refracting corpuscles, generally a single one only in a cell.” Prof. Huxley adds: “These corpuscles appear to be solid, but by the action of dilute acetic acid the interior generally clears up very rapidly, and a hollow vesicle is left of the same size as the original corpuscle. No gas is developed during this process, and sometimes the corpuscles are not acted upon at all by the acid, appearing then to be of a fatty nature. A strong solution of caustic ammonia produces a concentrically laminated or fissured appearance in them. Under pressure and with commencing putrefaction a number of them sometimes flow together into an irregular or rounded mass.”
The precise mode of development of the echinococcus-heads or scolices has been a subject of lengthened discussion between Leuckart and Naunyn. According to Leuckart the earliest indication of the scolex consists of a slight papillary eminence on the inner surface of the granular endocyst. After a short period this prominence displays in its interior a vacuole-like cavity, the latter being occupied, however, with a clear limpid fluid. Its margins become more and more clearly defined, until the cavity is by and by seen to be lined with a distinct cuticular membrane. The papilla increasing in size, becomes at first elongated or oval, eventually scoleciform, or even, perhaps, a true echinococcus-head. Thus far the description bears out, in a measure, the theoretical notions entertained by the older authors; but the developmental process does not stop here. The scolex-development has now to sacrifice itself by developing in its interior a brood of scolices or echinococcus-heads. In other words, it becomes transformed into the so-called brood-capsules of Leuckart and other authors. These structures were previously well known to Professors Erasmus Wilson and George Busk. Mr Wilson spoke of the capsule as “a delicately thin proper membrane, by which the Echinococci are connected with the internal membrane of the acephalocyst” (‘Med.-Chir. Trans.,’ 1845, vol. xxviii, p. 21). Mr Busk described the echinococcus-heads as “attached to a common central mass by short pedicles, which appear to be composed of a substance more coarsely granular, by far, than that of which the laminæ of the cyst are formed. This granular matter is prolonged beyond the mass of Echinococci into a short pedicle common to the whole, and by which the granulation is attached to the interior of the hydatid cyst.” What Mr Busk here describes as a granulation can only be equivalent to the brood-capsule and its entire contents, but he elsewhere speaks of the capsule itself as a “delicate membranous envelope.” It should be borne in mind that Busk’s paper was communicated to the Microscopical Society so early as the 13th Nov., 1844; being published in the ‘Transactions’ for that year.
Fig. 33.—Separate scolex, or echinococcus-head. Magnified 500 diameters. After Huxley.
In the completely developed state the echinococcus-heads exhibit somewhat variable characters as to size and form, the latter differences being, for the most part, dependent upon their degree of contraction and vitality. In the perfect condition they vary from the 1/60″ to the 1/100″ in diameter, being usually about the 1/80″. They are solid, and when stretched out exhibit an hour-glass-like constriction at the centre of the body, which divides the scolex into an anterior part supporting the rostellum and suckers, and a posterior part which has been compared to the caudal vesicle of ordinary Cysticerci. The rostellum supports a double crown of hooks, but the disparity of the two series is scarcely sufficiently marked to render their distinction obvious. The hooks of the smaller row vary in size from 1/1040″ to 1/830″ of an inch, whilst those of the larger series are from 1/830 to 1/555″. In all instances the root-processes are incompletely developed, and consequently vary in thickness. They are, as Leuckart also has stated, apt to exhibit abnormalities.
In regard to the development of the echinococcus-heads it further remains for me to observe that a distinct water-vascular system is recognisable in the scolices. By the intervention of the pedicle of the scolex this system is connected with the brood-capsule, and also with the vessels of the maternal endocyst. In the scolex there exists a circular channel immediately below the rostellum, and this ring, on either side, gives off two vessels which pass downwards in a tortuous manner, internally, until they arrive at the pedicle where they unite to form two channels, which latter are continued into the vascular system of the maternal endocyst. In the retracted condition their position, of course, becomes very much altered, and they form loops on either side of the central line which marks the space leading down to the inverted head. Neither Prof. Huxley nor myself have seen these vessels, which Leuckart observed in the scolex itself, but Huxley discerned some apparently loose cilia in the granular parenchyma of the body; their longitudinal measurement being about the 1/3500 of an inch.
Fig. 34.—An Echinococcus brood-capsule (flattened by pressure). Magnified about 120 diameters. From a drawing by Professor Busk.
As regards the production of “nurses” by the phenomenon of proliferation, I can only remark that the endocyst is primarily concerned. The secondary and tertiary vesicles must be regarded as so many special bud-developments which, instead of becoming brood-capsules, become daughter-vesicles and grand-daughter vesicles, constantly developing in their interior secondary and tertiary brood-capsules and scolices, but sometimes, it would appear, developing neither the one nor the other. This is the view of Naunyn, which is somewhat opposed by Leuckart, who holds that the vesicles ordinarily arise from within the layers of the ectocyst. Speaking of these daughter-hydatids Leuckart remarks that “Naunyn denies that they take their origin between the lamellæ of the mother bladder—a fact, however, which, in agreement with Kuhl and Davaine, I have seen more than once and have followed out step by step.” For my own part I incline to the belief that the process as observed by Leuckart is exceptional, and that under ordinary circumstances it occurs as Naunyn has described it. Thus the long and short of the whole matter appears to be that the endocyst is capable of forming solitary scolices. Some of the scolices become differentiated to form brood-capsules, a portion of whose individual echinococcus-heads may, in their turn, become secondary brood-capsules, whilst others fail to become either scolices or brood-capsules. It accords with our knowledge of the general plan of development to believe that the daughter and grand-daughter hydatids are likewise peculiarly modified scolices. They are, in short, buds of the endocyst.
The distribution of hydatids throughout the organs of the bearer, and their prevalence in particular countries, has especially engaged my attention. I have personally examined upwards of a thousand preparations of entozoa in our public collections; and of these, 788 are preserved in the anatomical and pathological museums of the metropolis. By this inspection I have obtained a tolerably accurate knowledge of the pathology, localisation and effects produced by the presence of bladder-worms in at least 200 unpublished cases of hydatid disease. Most of our museums exhibit one or more specimens that are unique. After making certain necessary deductions, I find that I have 192 new cases to add to the 135 cases of hydatid disease that I had previously recorded, affording a total of 327 cases available for statistical purposes. If an analysis of these cases be made and compared with the statistics furnished by Davaine, and if the whole be reduced to the lowest number of practically available terms, we at length obtain a result which, although it may be only approximatively correct, is nevertheless of much practical value and significance. The statistics in question stand as follows:
| Organs affected. | Davaine. | Cobbold. | Total. |
|---|---|---|---|
| Liver | 165 | 161 | 326 |
| Abdomen, including spleen | 26 | 45 | 71 |
| Lungs | 40 | 22 | 62 |
| Kidney and bladder | 30 | 23 | 53 |
| Brain | 20 | 22 | 42 |
| Bones | 17 | 16 | 33 |
| Heart and pulmonary vessels | 12 | 13 | 25 |
| Miscellaneous | 63 | 25 | 88 |
| Total | 373 | 327 | 700 |
In the main Davaine’s table and my own show a remarkable correspondency, as is seen in the numbers referring to hydatids of the liver, heart, and bones respectively. Where our results do not correspond the explanation of the discrepancy is sufficiently simple. The abdominal cases here credited as such in Davaine’s table are placed by him under pelvis, whilst the abdominal cases in my own table not only include the pelvic hydatids, but also two spleen cases, and nineteen others from the peritoneum and intestines.
As the facts here stand, the liver cases comprise nearly 461/2 per cent. In a large number of cases the entozoon has taken up its abode in organs of vital importance. If statisticians and officers of health would obtain an adequate conception of the fatal capabilities of parasites, they should consider these data. In 6 per cent. of all these cases the bladder worm has found its way into the brain, and of course proved fatal to the bearers; in about 31/2 per cent. more they took up their residence in the heart, also proving fatal; whilst of all the other cases put together I reckon that not less than 15 per cent. were concerned in bringing about the death of their hosts. I probably underrate the fatal capabilities of echinococcus disease when I express the conviction that hydatids prove fatal to 25 per cent. of all their human victims.
The recently published analysis of 983 cases by Dr Albert Neisser affords similar results. Of these, 451 were referable to the liver, or 45·765 per cent. The other cases, reduced as above, show in the main a similar correspondency.
It may be asked if these facts afford us any assistance in determining the amount of injury that we, as a people, sustain either directly or indirectly from hydatids. On carefully reviewing all the data before me, I may say that it is difficult to draw very precise conclusions; albeit it is not mere guess-work when I assert that in the United Kingdom several hundred human deaths occur annually from this cause. In some other countries the proportion is far greater; the oft-quoted case of Iceland, where the disorder is fatally endemic, still standing at the head of the afflicted territories.
Our Australian colonies are probably entitled to the next place of distinction in this respect. We have strong and recent evidence of the truth of this statement. Thus a writer in the ‘Australian Med. and Surg. Review’ says: “This disease is becoming unpleasantly frequent, and at present we have no reliable mode of treatment, either theoretical or empirical.” Another writer observes (‘Melbourne Argus,’ May 18th, 1874), “Hydatid disease is endemic in this colony; and, though not so constantly met with as in Iceland, we may probably claim the doubtful honor of holding the second place in the list of countries so affected.” In the ‘Argus’ for June 20th of the same year, another writer refers to the frequent notices of cases of hydatids published in the various local newspapers. A retired medical man, the late Mr J. P. Rowe, writing in the ‘Melbourne Leader’ (Sept. 7th, 1872), incidentally remarked on the “notable increase of hydatid disease in the human subject.” Again, still more satisfactory evidence is afforded by a reviewer in the ‘Leader’ of the 31st January, 1874. Commenting on my manual, he not only takes occasion to speak of the prevalence of hydatids generally, but also supplies that kind of accurate statistical evidence of which we so much stand in need. He gives the following table, showing the number of deaths from hydatids in Victoria for eleven years. It is instructive in many ways.
| Years. | Males. | Females. | Total. |
|---|---|---|---|
| 1862 | 3 | 2 | 5 |
| 1863 | 3 | 2 | 5 |
| 1864 | 6 | 3 | 9 |
| 1865 | 9 | 6 | 15 |
| 1866 | 18 | 7 | 25 |
| 1867 | 13 | 12 | 25 |
| 1868 | 21 | 12 | 33 |
| 1869 | 12 | 10 | 22 |
| 1870 | 10 | 7 | 17 |
| 1871 | 6 | 9 | 15 |
| 1872 | 24 | 5 | 29 |
| Total deaths in eleven years | 125 | 75 | 200 |
To employ the writer’s own words, “this mortality gives only a faint notion of the extreme prevalence of hydatids in Victoria, since numbers of cases are cured by tapping, and otherwise by medical treatment, or by spontaneous bursting of the cysts.” Hydatids are often found post mortem where their presence has never been suspected during life. “To meet with hydatids as a cause of deranged health is now a matter of daily expectation with every medical practitioner.” Lastly, Dr Dougan Bird, in his able brochure on ‘Hydatids of the Lung,’ fully confirms these statements, remarking that the rich and poor of the Australian metropolis suffer just as much from hydatids as do either the shepherds of the western plains, or the miners of Ballarat and Sandhurst.
Such are the facts from Australia. As regards home evidence, so far as I am aware, little or nothing has been done towards securing an accurate estimate of the mortality in England from echinococcus disease. The reports of the Registrar General give no sufficient sign. The explanation is not far to seek, since for the most part hydatids are either classed with diseases of the liver, or with those of the other organs in which they happen to have been present.
One of the most valuable contributions to our knowledge of the prevalence of hydatid disease affecting animals is that supplied by Dr Cleghorn, from a statistical table constructed by the executive commissariat officers stationed at Mooltan. The record in question shows that out of 2109 slaughtered animals, no fewer than 899 were affected with hydatid disease. This is equal to more than forty-two per cent. In the majority of cases, both the lungs and liver were affected, cysts were found 829 times in the liver and 726 times in the lungs. In a few instances they were present in the kidneys, and also occasionally in the spleen. The inference from all this is that in India, if not elsewhere, the echinococcus disease is much less common in man than it is in animals. The explanation is simple enough, since cattle have more ready access to, and less scruple in partaking of filthy water and food in or upon which the eggs of the Tænia echinococcus abound.
Into purely professional questions connected with the treatment of the echinococcus malady I do not here enter; nevertheless, in connection with hygiene I may observe that the prevalence of hydatids in any country is strictly dependent upon the habits of the people. The close intimacy subsisting between the peasantry and their canine companions is the primary source of the endemic; and where dogs are not kept, it is well nigh impossible that the disease should be contracted. The fact that every Icelandic peasant possesses, on an average, six dogs, and that these dogs share the same dwelling (eating off the same plates and enjoying many other privileges of intimate relationship) sufficiently explains the frequency of hydatids in that country. According to Krabbe, the sexually mature Tæniæ occur in 28 p. c. of Icelandic dogs, whereas in Copenhagen he found it twice only in 500 dogs examined. In his work (quoted below, p. 58, or Fr. Edit., p. 60) Krabbe comments on a sensational passage which, in my introductory treatise (p. 283), I had quoted from a popular memoir by Leuckart (‘Unsere Zeit,’ s. 654, 1862). The practitioners whom we had spoken of as “quacks” are mostly homœopaths; and it appears that even those who are not in any legal sense professional men “treat their patients much in the same way as ordinary medical men.” It simply comes to this, that, instead of dog’s excrement forming with the aforesaid “quacks” a conspicuous or common remedy (as Leuckart’s description had led me to infer), this nasty drug is now rarely administered, and by the grossly ignorant only.
Up to the present time no person has seen the Tænia echinococcus in any English dog which has not been previously made the subject of experiment, but considering the prevalence of hydatid disease amongst us, there can be no doubt that English dogs are quite as much if not more infested than continental ones. Probably, at least one per cent. of our dogs harbour the mature tapeworm. Certainly a great deal of good might accrue from the acquisition of more extended evidence respecting the prevalence of this and other forms of entozoa infesting man and animals in this country.
From Schleissner’s table it appears that hydatids are more frequent in women than in men. Apparently, it is not so in Australia. As regards Iceland the explanation must be sought for in the different habits of life. No doubt, water used as drink by women is constantly obtained from supplies in the immediate neighbourhood of dwellings, and in localities to which dogs have continual access. The comparative rarity of the echinococcus disease amongst sailors is not so much dependent upon the circumstance that seamen’s diet usually consists of salted provisions, as upon the fact that these men can seldom have opportunities of procuring water from localities where dogs abound. In regard to water drinking, there is ground for believing that the addition of a very little alcohol is sufficient to destroy the six-hooked embryos of Tænia echinococcus whilst still in ovo; and there is no doubt that water raised to a temperature of 212° Fahr. will always ensure the destruction of the larvæ. Boiled water by itself is by no means palatable. The reason why the upper classes comparatively seldom suffer from hydatids may be attributed to the circumstance that those few who drink water take the very proper precaution to see that it is either “pump” or fresh spring water in which no living six-hooked embryos are likely to exist. So far as hydatids are concerned, wine and beer drinking is preferable to water-drinking; yet if water is carefully filtered no evil of the parasitic kind can possibly result from its imbibition. An ordinary charcoal filter will effectually prevent the passage of the ova, since their diameter is nearly 1/370 of an inch.
From what has been stated it follows that personal and general cleanliness are eminently serviceable as preventions against infection, but to ensure perfect success other precautions must be exercised, especially in relation to our contact with and management of dogs. Leuckart puts this very clearly when he says:—“In order to escape the dangers of infection, the dog must be watched, not only within the house, but whilst he is outside of it. He must not be allowed to visit either slaughter-houses or knackeries, and care must be taken that neither the offals nor hydatids found in such places are accessible to him. In this matter the sanitary inspector has many important duties to perform. The carelessness with which these offals have hitherto been disposed of, or even purposely given to the dog, must no longer be permitted if the welfare of the digestive organs of mankind is to be considered. What blessed results may follow from these precautions may be readily gathered from the consideration of the fact that, at the present time, almost the sixth part of all the inhabitants annually dying in Iceland fall victims to the echinococcus epidemic” (l. c., s. 654). Similar measures had previously been recommended in less explicit terms by Küchenmeister, who in effect remarked that the principal thing was to ensure the destruction of the echinococcus vesicles. He also recommended the expulsion and annihilation of the Tænia echinococcus. In order to carry out this idea, it was suggested by Dr Leared that every dog should be periodically physicked, and that all the excreta, tapeworms included, should be buried at a considerable depth in the soil. I advised, however, that in place of burying the excreta, they should, in all cases, be burnt. I had, indeed, long previously urged this measure (in a paper “on the Sclerostoma causing the gape-disease of fowls,” published in 1861), with the view of lessening the prevalence of entozoa in general, whether of man or animals. The rule I suggested stood as follows:—All entozoa which are not preserved for scientific investigation or experiment should be thoroughly destroyed by fire, when practicable, and under no circumstances whatever should they be thrown aside as harmless refuse. As an additional security I recommended that boiling hot water be occasionally thrown over the floor of all kennels where dogs are kept. In this way not only would the escaped tapeworms be effectually destroyed, but also their eggs and egg-contents, including the six-hooked embryos. These measures were again advocated at the Cambridge Meeting of the British Association in 1862, and also more fully in a paper communicated to the Zoological Society, during the autumn of the same year (‘Proceedings,’ vol. xxx, pt. 3, pp. 288, 315).
As the scope and tendency of this work preclude the textual admission of clinical details, I must limit my remaining observations to the pathology of hydatid disease. At very great labor, pursued at distant intervals during a period of ten years, I sought to ascertain the probable extent and fatality of this form of parasitism in England, by going over such evidence as our pathological museums might supply. Although, from a statistical point of view, the investigation could hardly be expected to yield any very striking results; yet clinically viewed the study was most instructive. The evidence which I thus procured of numerous slow and painful deaths from echinococcus disease, further stimulated me to place a summary of the facts on record. Physicians, surgeons, scientific pathologists, and veterinary practitioners are alike interested in the study of hydatid disease; and I had not proceeded far in my careful investigation before it became evident to me that very great practical results would ensue if, in this kind of effort, the principle of division of labor had full play. At all events, within these museums lie concealed a mass of pathological data which, although well within reach, have not been utilised to the extent they ought to have been.
As a student of parasites for some thirty years, I must without offence be permitted to protest against the too frequent omission of parasites in statistical evidence as a cause of mortality. From facts within my own knowledge I can confidently assert that parasites in general, and hydatids in particular, play a far more important part in the production of disease and death than is commonly supposed. In saying thus much, however, I am not insensible to the fact that, in recent times, new methods of treatment combined with higher surgical skill, have greatly tended to lessen the fatality of this affection. In this connection I would especially refer to the recorded experiences of an able colonial surgeon, Dr MacGillivray, as made known in the pages of the ‘Australian Medical Journal.’ The able surgeon to the Bendigo Hospital, treated as in-patients, from 1862 to 1872, inclusive, no fewer than seventy-four cases of hydatid disease. He operated on fifty-eight of them. Two patients were tapped for temporary relief (as they were dying of other diseases); and of the remaining fifty-six only eleven died. No fewer than forty-five were discharged cured—a fact redounding largely, I should think, to the credit of Australian surgery.
In reference to museum evidence I have no hesitation in saying that the pathological collections in the metropolis abound in rare and remarkable illustrations of hydatid disease; most of the preparations being practically known only to such few members of the medical profession as have been at some time or other officially connected with the museums. Not without justice, curators often complain that their work and catalogues are turned to little account. As a former conservator of the Edinburgh University Anatomical Museum (1851–56), and subsequently as museum-curator at the Middlesex Hospital Medical College, I am in a position to sympathise with them. Valuable, however, as the catalogues are, it is often necessary to make a close inspection of the preparations in order to arrive at a correct interpretation of the facts presented.
Although the entozoal preparations in the museum attached to St Bartholomew’s Hospital are, comparatively speaking, few in number, there are some choice specimens of hydatid disease. There is a remarkable case in which hydatids invaded the right half of the bones of the pelvis; death resulting from suppurative inflammation of the cysts. This patient, a woman, had also another hydatid cyst which was connected with the ovary. Amongst the series contributed by Dr Farre, there is a case represented where a large cyst containing numerous hydatids “occupied the pelvis of an infant and produced retention of urine,” which ultimately proved fatal. There are also several fine examples of hydatids from the omentum (Dr Farre’s case), besides a good specimen of acephalocysts connected with the vesiculæ seminales. There are two other cases in which these larval entozoa were passed with the urine. At the time when I made my inspection, the entire series represented twenty-five separate cases, of which only one appears to have been published in detail (Mr Evans’s case, ‘Medico-Chirurgical Transactions,’ 1832). In addition to the above, I must not omit to particularise two instructive preparations illustrative of a case in which an hydatid was lodged in the right half of the cerebrum. This was from a girl in whom head symptoms showed themselves a year before death, and in whom there was partial hemiplegia of the left side. I may add that there is also in the series a doubtfully genuine example of hydatids of the breast.
The collection in connection with the Westminster Hospital contains several highly interesting specimens of entozoa (one of which I believe to be altogether unique), but it is by no means rich in the matter of hydatids. Out of a score of preparations of parasites of various kinds, only four (apparently representing the same number of cases) are hydatids, all of which appear to have been connected with the liver. Two are certainly so, one of the latter (Mr Holthouse’s case) showing calcareous degeneration.
The museum connected with St Mary’s Hospital Medical School, in addition to several liver cases, contains one interesting example of hydatids of the lung (Dr Chambers’s case), and also three valuable preparations illustrating Mr Coulson’s remarkable case of hydatids affecting the tibia. One of the preparations shows the bone itself, which was eventually removed at the joint, the operation having been performed by Mr Spencer Wells.
Here, perhaps, it will not be out of place to mention as a fact of special clinical interest that I have encountered records of no fewer than nine other similar cases where hydatids have taken up their abode in the tibia, generally selecting the head or upper part of the bone. Some of my notes have been mislaid, but, speaking from recollection, one of the choicest specimens which I have examined is that contained in the pathological museum of the Nottingham Hospital.
When I first went over the collection of the Middlesex Hospital Museum, I found it to contain fifty-four preparations of entozoa, of which some fourteen only were true hydatids, representing as many separate cases. There are now upwards of a score of preparations of hydatids, several of the cases having already had ample justice done to them by Dr Murchison in his well-known memoir (‘Edinb. Med. Journ.,’ Dec., 1865). Amongst the most interesting preparations I would especially call attention to two fine and genuine specimens from the kidney, another very large example of an hydatid situated between the bladder and rectum, a simple acephalocyst removed from the orbit (Mr Hulke’s case), and the hydatid removed from the axilla by the late Mr Charles Moore. There is a jar containing hundreds of hydatids that were taken from the thoracic cavity of a dissecting-room subject, who was reported to have died of phthisis; and there is another preparation of an hydatid of the heart, which also proved fatal, without there having been the slightest suspicion entertained as to the true nature of the disease. For this fine preparation the museum stands indebted to Dr Moxon, of Guy’s Hospital. Several of the liver cases are particularly instructive; but amongst the specimens presented by Mr Mitchell Henry is a small bottle full of minute hydatid vesicles, all of which were removed from the interior of the tibia. The history of this case has been lost; and, unfortunately, the bone from which the parasites were taken does not appear to have been preserved.
The museum connected with King’s College contains at least a dozen good specimens of liver hydatids, several of the cases being of special interest from a pathological point of view. There are two remarkably fine examples of hydatids contributed by Dr Hooper, the parasites in one case affecting the spleen, and in the other involving the ovary and uterus. The spleen contained numerous encysted hydatids, whilst the uterine organs exhibited “an immense collection” of the same growths. In this place, also, I may refer to an hydatid-like entozoon, taken from a cyst in the ovary of a female who had been under the care of Dr Johnson (1860). It is, apparently, a genuine example of the slender-necked hydatid (Cysticercus tenuicollis); and if so (as might be determined by dissection), is, so far as I aware, the only specimen of the kind in existence from the human bearer. There is a renal hydatid (presented by Dr Pass, of Warwick) which was obtained from a lunatic, its presence being “quite unsuspected during life.” Amongst the liver cases (the majority of which are from Dr Hooper’s collection), there is one enormous hydatid that was obtained from a young woman who had died during a fit of laughter. The tumour had pushed the diaphragm up to a level with the fourth rib; and it is stated that, on puncturing the cyst, the fluid contents were ejected “in a jet nearly two feet high.” There is one case represented where numerous hydatids were expectorated after hepatitis, whence it was concluded that they were originally connected with the liver. There is a large solitary hydatid that was removed from a young female who died of phthisis, and in whom the consequent swelling had formed in the neighbourhood of the navel. Especially instructive, also, from a clinical point of view, is a case of peritoneal hydatids where the tumours had been diagnosed to represent a case of extra-uterine fœtation. It appears that there were two cysts, one of them being connected with the uterus. Two of the enormous hydatids taken from these cysts are preserved in the collection of the Anatomy School of Oxford. Several of the preparations show to perfection the stages of natural cure produced by calcareous degeneration; and there is one liver showing three of these so-called ossified cysts. The disease in this case proved fatal.
Most of the entozoa displayed in the Charing Cross Hospital Museum have been contributed by Dr Wiltshire, the series being particularly strong in tapeworms. There are four characteristic examples of hydatids of the liver, representing as many separate cases. Two were from abscesses of this organ. In one of these, Mr Canton’s case, the hydatid was, I believe, expelled after operation; but in the other example (presented by Mr Rose, of Swaffham) the parasite was evacuated from an abscess, which burst of itself, externally.
In the museum at University College, I examined sixteen preparations of hydatid disease, representing almost as many distinct cases. One is a wax model. Eight of the specimens were from the liver, five from the abdomen (including those of the omentum and mesentery), two from the lungs, and one from the heart. The model displayed ordinary hydatids of the liver bursting into the lungs. The mesenteric example is particularly fine, whilst that from the omentum is undergoing calcareous degeneration. Probably the most interesting of all is the example showing an hydatid lodged in the septum of the heart. This was from a middle-aged female, who died suddenly whilst pursuing her ordinary domestic avocations.
The museum of the Royal College of Surgeons contains a fine collection of parasites, its chief strength in this respect being due to the special series of entozoa. Were visitors to judge by the contents of the catalogue of this series (which I prepared some years ago at the instance of the Council of the College), they might be led to suppose that the hydatids were only feebly represented. Out of nine preparations of hydatids in this section, only six have come from the human body. However, scattered throughout the collection, I found that there were no fewer than thirty-five preparations of hydatids belonging, apparently, to as many as thirty separate cases. Omitting, for the present, all mention of these derived from animals, I ascertained that, of the thirty human cases, thirteen were referable to the liver, four to the abdomen, three to the lungs (one of which was originally connected with the liver), and two to the brain. Five were of uncertain seat. With the abdominal cases we may also include one case of hydatids of the spleen, and another where these organisms were found in the region of the bladder. There is a characteristic breast case. One of the original Hunterian cases (in which “a prodigious number of hydatids were found in the sac of the liver and dispersed throughout the cavity of the abdomen”) appears, though it is not expressly so stated in the catalogue, to have been regarded as an ordinary example of abdominal dropsy. In one of the three lung cases two small hydatids were separately expectorated at an interval of about a month. This occurred in a female.
I may here incidentally remark that many cases are on record where abdominal hydatids have been overlooked, the patient being supposed to be suffering from ascites. One such instance took place a few years ago at the Middlesex Hospital. I well remember a similar case of supposed hydrothorax, where the post-mortem examination revealed the presence of immense numbers of these formations occupying the right side of the chest. This case occurred at the Norfolk and Norwich Hospital, at the time when I was a student there, some thirty-five years ago.
The pathological collection connected with St George’s Hospital displays several good hydatid preparations, the entire series representing at least twenty-two separate cases. Of these, fifteen are referable to the liver, that is, if we include Dr Dickinson’s case, already published, where hydatids were found within the hepatic duct. There are two renal cases; also one from the brain (Dr Dickinson’s case), and another where an hydatid was expectorated. Besides these, there are three other highly characteristic examples of echinococcus disease affecting the region of the neck, breast, and axilla respectively.
The museum of the London Hospital Medical School contains a large collection of parasites. Out of fifty-seven preparations of entozoa, I found twenty-two referable to hydatids; and, so far as I could gather, all of them belonged to different cases. Only one case seems to have been published in detail. This, though a very old preparation, is a fine example of an hydatid, nearly three inches in length, occupying one of the cerebral hemispheres (‘Edinb. Med. Journ.,’ vol. xv). There is a second brain case, where the vesicles were of small size, but very numerous. Of the other twenty cases, fourteen belong to the liver, two to the spleen, one to the lung, one to the uterus; one being a very large hydatid of doubtful seat, and another being referable to the lumbar region, where it formed a tumour containing “a large number of small hydatids.” Amongst the more remarkable specimens is that described in the MS. catalogue as “a true hydatid cyst developed in connection with the broad ligament.” This preparation, unique of its kind, shows no trace of the ovary, which, indeed, seems to have disappeared altogether. One of the liver cases should rather be classed as abdominal, since the large cyst is situated between the diaphragm and liver, pressing upon the latter organ below and also upon the lung above, but apparently not involving either of these viscera structurally. Another very striking case is that in which there is an external opening communicating with the cyst in the liver, and an internal opening through the diaphragm communicating with the lungs and bronchial tubes. The patient had actually coughed up liver hydatids by the mouth, and had passed others through the right wall of his abdomen. There is another liver case in which the hydatids, in place of escaping externally, had gained access to the inferior cava; and if I understand the MS. record rightly, in the same patient a second hydatid communicated with the portal vein, and a third with the hepatic vein. Lastly, I must add that there is yet another fine preparation of liver hydatids, occurring in a lad, nineteen years of age. He had, it seems, met with “a slight accident, and died with obscure head symptoms;” but the odd part of the case is that at the post-mortem examination there was positively nothing found that could explain the patient’s death. He was under the care of Mr Luke (1834).
Comparatively recently I inspected the collection at St Thomas’s Hospital, which I found to be particularly rich in entozoa of various kinds, especially tapeworms and hydatids. I encountered seventy-six preparations of internal parasites; and of these, forty-two were of the hydatid kind, representing at least thirty-three different cases. I say “at least,” because it is often impossible to decide in instances where no history of the specimens can be obtained. Thus, there are three similar preparations of hydatids passed by the urethra, and, from their appearance, I judge them to have come from one and the same patient; yet there is no statement in the catalogue to that effect.
Of the thirty-three cases of hydatids represented in this museum, I reckoned eighteen as referable to the liver, two to the brain, two to the bones, two to the urinary organs, and one to the lung, spleen, uterus, and soft parts of the thigh respectively. There are also three that may be classed as peritoneal. There is another choice example in which the disease cannot be referred to any particular organ. I allude to Dr Peacock’s case, already published (‘Pathological Transactions,’ vol. xv), where the lungs, liver, heart, spleen, and some other organs, were all occupied by hydatid formations. As an instance of extensive visceral infection by Echinococci in the human subject, I believe this case to be unique. The brain hydatids are particularly fine. In the specimen presented by Mr Boot, of Lincoln, the hydatid, two inches in diameter, is lodged in the anterior horn of the left ventricle. One of the peritoneal cases is remarkable for the amount of forward displacement of the pelvic viscera, caused by four or more hydatids, each of them nearly as large as a cricket-ball. Amongst the abdominal cases I have included a recent preparation, to which Mr Stewart has called my attention. The hydatid in question, of the size of a large lemon, existed near the fundus of the bladder, its walls being one third of an inch in thickness, and forming an unusually firm tumour. Of all the fine specimens of hydatids in the collection, however, none have struck me so much as those affecting the bones. There is a humerus, taken from a man thirty-four years of age, in which the shaft is occupied throughout by small hydatids that have destroyed almost all the cancellous structure; in some places, also, the absorption of the cortical layer has gone on to such an extent as to have left little more than the periosteum. Of course, the bone was at last fractured easily. It is a beautiful specimen; and the existence of Echinococcus-heads was proved by microscopic evidence. Scarcely less interesting are two preparations illustrative of Mr Traver’s case of a man, thirty-eight years of age, in whom numerous small hydatids occupied both the head of the tibia and the lower end of the femur. Each set of parasites freely communicated with the knee-joint, necessitating amputation of the limb.
The very large museum connected with Guy’s Hospital is rich in hydatids. When, some time ago, I spent several days in going over the collection, I examined seventy-six preparations, representing apparently seventy separate cases of this affection. Amongst the noteworthy specimens one lung hydatid was intimately associated with a thoracic aneurism, two others being connected with the pleura; and of seven abdominal cases, five were connected with the peritoneum, one with the mesocolon, and one with the aorta. This last-mentioned instance occurred in a woman of sixty years, who, until her death, was treated for dropsy. She complained of incessant pain, which was only relieved when she rested on her hands and knees. Of the three cases affecting the heart one has been published (Mr Henderson’s), where the patient, a girl of nineteen years, died suddenly whilst in the apparent enjoyment of perfect health. In one of the other two cases (Mr May’s, of Tottenham), the left lung was also involved. One case of hydatid disease affecting the spinal column appears to have been originally an ordinary liver case. In Mr Cock’s example of genuine mammary hydatids, the hooklets and echinococcus heads were detected; but I am not sure that a similar result of microscopic examination was obtained in the equally interesting example of hydatids of the thyroid gland (also removed by Mr Cock). There are five bladder cases, all apparently genuine (of which one has been published); and there are also five other cases referred in the catalogue to the kidneys, of which I regard two as doubtfully parasitic in character. Of three cases of hydatid growths occupying the soft parts of the thigh, two were under Mr Bryant’s care. The museum likewise contains an old preparation of hydatids of the tibia, but its history has been lost. There are also two brain cases, besides upwards of a score of more or less characteristic and instructive cases of hydatids affecting the liver.
Scattered amongst the museums connected with the larger provincial schools and recognised hospitals there must be a great many valuable preparations of hydatid disease; at all events, I judge so from the inspection I have incidentally made of a few of the collections.
Of eleven preparations of human hydatids which I observed in the Cambridge Anatomical Museum, apparently representing the same number of cases, seven were connected with the liver and one with the lungs. Those hydatids displayed in the “special series” of entozoa were of uncertain seat. From the recently published and valuable ‘Notes’ by Dr Bradbury, I have no doubt that considerable additions have been made to the Cambridge Collection since my last visit.
The museum at Oxford contains some choice specimens of hydatids, but I have only personally inspected a few of them. In the absence of original notes, however, I am indebted to the kindness of Mr W. Hatchett Jackson for supplying me with several interesting particulars. The anatomical department of the Oxford Collection shows from one particular case two hydatids that were found “under the dura mater.” In the pathological department we find one hydatid from the liver of a male subject, and also a preparation showing a number of small hydatids that were “coughed up from the lungs of a female.” There are also in this department (Dr Acland’s) two examples of hydatids from the diaphragm, apparently belonging to two separate cases. One is described as a large “hydatid in the diaphragm covered by the pleura,” whilst the other is spoken of as “springing from the diaphragm and projecting into the sac of the pericardium.” There is likewise a preparation showing a number of small specimens of hydatids that were passed per anum by a female. It is conjectured that they came from the liver.
The small pathological museum attached to the Brighton and Sussex Hospital is particularly rich in hydatids. Amongst others, it contains preparations illustrative of the remarkable case of hydatids in the region of the prostate, communicated by Mr Lowdell, in the ‘Lancet,’ in 1846.
The comparatively large museum adjoining the Norfolk and Norwich Hospital displays a choice series of hydatids, chiefly from the collection of the late Mr Crosse. That eminent surgeon prepared a special set of specimens to illustrate the process of natural cure by calcareous degeneration; and I may here, perhaps, be pardoned for mentioning that it was the study of these and other entozoa in Mr Crosse’s Collection, some thirty or more years ago, that first drew my attention to the phenomena of parasitic life. Illustrations of the helminths in question are still in my possession. In one case (which is instructive as indicating the possibility of death from the simplest form and commonest habitat of an hydatid) a lad, twelve years old, received a slight blow from a playmate. Something gave way, and death speedily followed. It was found by post-mortem examination that a solitary liver hydatid, rather larger than a cricket-ball, had been ruptured. Although the case is almost unique, it is nevertheless by no means pleasant to reflect upon the fact that under similar circumstances a slight blow might prove fatal to any one, no matter in what internal organ the bladder worm happened to be situated.
Before concluding my summary notice of the human hydatids contained in the metropolitan and certain other museums, there is an interesting literary contribution that I cannot pass unnoticed. In the November number of the ‘Indian Medical Gazette’ for 1870 an article occurs in which it is stated that the Calcutta Medical College Museum contains eighteen specimens of hydatid cysts of liver. This fact was, it seems, originally adduced to show, not the frequency, but rather the rarity, of the occurrence of hydatids in India. However, from a valuable communication by Dr James Cleghorn, which was published in the same periodical for the following March, it appears that hydatids of the liver are much more common in India than is generally supposed. This, he says, is owing to the circumstance that many of the so-called cases of tropical abscess are neither more nor less than examples of hydatid cysts that have suppurated. Besides Cleghorn’s evidence, we have the previous testimony of the Inspector General I. M. D., whose Report for 1868–69 I have already referred to in connection with Cysticercus in beef. He says: “During some three months’ regular observation of the animals killed at the Commissariat slaughter-house here, at least 70 per cent. of the beef livers may be calculated as thus affected. Cobbold, writing of the Tænia echinococcus, says that ‘this little tapeworm infests only the dog and the wolf.’ Therefore, considering the immense number of pariah dogs fed on the refuse of animals infected with hydatids, it seems more than probable that the parasite must attain its strobila condition in their intestines, and through them be eventually disseminated over the pastures on which the cattle graze.”
I now turn to a neglected phase of the subject from which much practical instruction may be gathered. The consideration of the pathological phenomena of hydatid disease as it affects the lower animals is of high interest, and no prejudice should induce any medical man from accepting such useful data as may be gathered from this source. The facts of hydatid parasitism in animals, though often peculiar, are, for the most part, of an order similar to those presented in the human subject. If any medical practitioner thinks it beneath his dignity to study the pathology of the lower animals, the conduct of John Hunter in this respect is a standing protest against such narrowness.
The museum of the Royal College of Surgeons of England contains some of the finest specimens of hydatids from the lower animals that are to be seen anywhere, the very choicest of them having been selected by Hunter himself. That distinguished man sought information from every available source, and hydatids were for him of almost equal interest, whether found in the body of a human being or in the carcase of an ox or an ass. Now, at all events, neither pathologists nor sanitarians can well afford to neglect comparative pathology; and, for myself, I am free to say that the yearly exposition to the students of the Royal Veterinary College of the phenomena of parasitic life amongst animals has brought with it an ever-increasing knowledge of the most curious and often unlooked-for information. Some of the data thus supplied are quite remarkable. Let me also add that my studies of the entozoa of wild animals have put me in possession of particulars of high value in regard to the larger question of the origin of epidemics. Beasts, birds, reptiles and fishes, of every description, are liable to succumb to internal parasites, and there is practically no end to the variety of useful information to be obtained from this source. I have collected materials almost sufficient for a separate treatise on this department of the subject, but I fear I shall never have either the time or opportunity to give the facts due publicity. Here, for obvious reasons, I must for the most part restrict myself to the hydatids properly so called.
Referring, in the first instance, to the hydatids of animals that have the same mode of origin and exhibit the same general characteristics as those found in man, I notice that four of the metropolitan museums exhibit nine examples of liver Echinococci. The Hunterian Collection shows specimens of this kind from the pig, monkey, zebra, and lion. The museum at St Bartholomew’s Hospital contains two examples from the pig and one from a cow; whilst the animal liver-hydatids preserved in the King’s College and Guy’s Museums, respectively, are from the pig and sheep. That from the latter is partly calcified. Respecting animal hydatids affecting the lungs, the Cambridge Museum exhibits a simple acephalocyst from a monkey, and the Guy’s Hospital Museum shows a pulmonary hydatid from the kangaroo. In the museum at Oxford, Dr Acland’s (pathological) department shows a preparation of “one large echinococcus cyst from the abdomen of a baboon,” whilst Dr Rolleston’s department (anatomical) displays the echinococcus itself from the “cavity of the abdomen of the same animal.” The collection also contains a variety of other bladder worms from different animals. The Hunterian Museum, Lincoln’s Inn, exhibits four or five alleged examples of hydatids from the kidney of the sheep, besides another from the spleen. Some of these are of very doubtful character. A cystic kidney from the sheep, preserved in the London Hospital Museum, and originally supposed to have been due to hydatids, is (as hinted in the MS. catalogue) certainly not of parasitic origin. In regard to the occurrence of hydatids in the heart of animals the Hunterian series shows two good examples from cattle, whilst the collection at University College exhibits one taken from the wall of the left ventricle of a sow. This was presented by Dr Elliotson.
In the museum of the Royal Veterinary College there are a number of excellent preparations of true hydatids taken from various animals, especially from cattle, swine, and sheep; and there are also many kinds of bladder worms which, though often called “hydatid” by veterinarians, have a totally different origin from that of the true Echinococci. The so-called gid-hydatids (Cœnuri) and slender-necked hydatids (Cysticercus tenuicollis) are of this description. Specimens of the polycephalous brain hydatid, or Cœnurus, also exist in the museums connected with St Bartholomew’s, Guy’s, and St Thomas’s Hospital Medical Colleges, as well as in both the anatomical and pathological departments of the Oxford Museum. Specimens of large Cœnuri occurring in the soft parts of rabbits may be seen in the Guy’s Museum (presented by Mr Carpenter). Similar characteristic specimens exist in the Oxford Collection, labelled C. cuniculi, obtained from the “masseter and infraspinatus” muscles of a rabbit. My private collection also contains a recent addition of this remarkable hydatid, sent to me by Mr Alston from Ayrshire. It is the only one I have seen from Scotland. In the second half of this work these Cœnuri will again come under notice. Three examples of the slender-necked hydatid (from a monkey and two sheep respectively) may be seen in the Guy’s and University College Collections, and there are several in the museum of the Royal Veterinary College.
I cannot go out of my way to speak of other bladder worms, except so far as to call attention to the heart of a bear preserved in the museum at Guy’s, the walls of which are crowded with Cysticerci. That unique preparation ought to be carefully examined and described. The Hunterian Museum contains two magnificent specimens of hydatids affecting the bones of cattle. In the one case a solitary vesicle occupies the shaft of the humerus; whilst in the other several “acephalocysts” have taken up their residence within the cancellous structure of the ilium.
In the matter of human mortality from hydatids I have already supplied statistical evidence of the unenviable distinction which our Australian colonies exhibit, and in addition to the facts brought forward I may add that Dr Lewellin has mentioned to me a fatal case in which an hydatid occupied the whole length of the vertebral canal. The patient was under Dr Annand’s care. There could be no doubt as to the genuineness of the case, as the spinal cyst was tapped during life, when echinococcus hooklets were found.
Through Dr Lewellin I am also indebted to Dr H. B. Allen, pathologist at the Melbourne Hospital, for the particulars of a case of hydatids of the cerebrum, which are given as follows:
“J. Q—, aged 15, was admitted into the Melbourne Hospital on the 13th November, 1877, suffering from partial left hemiplegia. He rapidly became insensible and died next day. His mother furnished the following history.
“He had been woodcarting in the bush for a considerable time, and while thus engaged eight weeks before admission began to lose power in his left arm and leg; gradually the paralysis increased, and he was taken home, where he remained for six weeks. During this time he had every week an attack of severe headache, and once he lost all sight for over half an hour. Gradually the symptoms increased, and he was taken to the hospital, but even then was able to walk with assistance part of the way.
“At the autopsy, when the calvarium was removed, a large cyst about four inches in diameter was found on the mid-convexity of the right hemisphere of the cerebrum, slightly towards its anterior part. It formed a marked prominence on the anterior surface of the brain, and was bounded superficially by the pia mater and arachnoid, which were neither noticeably thickened nor adherent to the dura mater. On opening the cyst it was seen to extend inwards and abut on the wall of the lateral ventricle, and consisted of the ordinary gelatinous membrane, studded internally with little granular eminences, some pellucid, some opaque white. The contents were thin limpid fluid. The brain tissues around presented scarcely any induration. All other organs structurally healthy, congestion being the only morbid condition present.
“The specimen is preserved in the hospital museum, which contains two other preparations of hydatids in the brain, and also an hydatid cyst of large size growing from the interior of the frontal bone.”
In concluding this account of hydatids I may remark that, by the employment of sanitary measures, the disorder might, in course of time, be thoroughly stamped out. What these measures are I have already stated.
I need hardly say that the following bibliography by no means exhausts the records of echinococcus disease. In Dr Albert Neisser’s recent monograph nearly a thousand separate cases are quoted and classified. The monograph of Dr Hearn, which is not mentioned in Neisser’s work, also contains a valuable bibliography.
English literature. Hydatids in general (Bibliography No. 20 a).—Ballard, E. (review of Henoch), ‘Med.-Chir. Rev.,’ 1854.—Bird, S. D., ‘On Hydatids of the Lung; their diagnosis, prognosis, and treatment,’ 2nd edit., Melbourne, 1877.—Busk, “On the Nat. Hist. of the Echinococcus,” ‘Micr. Soc. Trans.,’ orig. series, vol. ii, 1849.—Budd, G., ‘Diseases of the Liver,’ Lond., 1845.—Carmichael, R. (lecture), ‘Dub. Med. Press,’ 1840, p. 91.—Cobbold, T. S., ‘Entozoa,’ chap. vii and viii, 1864.—Idem, “On Hydatid Disease” (lecture), ‘Lancet,’ June, 1875, p. 850.—Idem, “On Hydatid Diseases of Man and Animals” (museum specimens), in a series of articles contributed to ‘Brit. Med. Journ.,’ Oct., 1875, to Jan., 1876; fully reprinted in the ‘Veterinarian,’ Feb., 1876.—Copland, J. (Art. “Hydatids”) in his ‘Dictionary,’ 1848.—Davies, T., ‘Lond. Med. Gaz.,’ 1835.—Gairdner, J., and Lee, ‘Edinb. Med. and Surg. Journ.,’ 1844.—Goodsir, H. S. D. (same ref., Lee’s case), 1844.—Goodsir, J. (same ref.), 1844.—Gross, S. D., ‘Elements of Path. Anat.,’ chap. xv, Boston, U.S., 1839.—Hawkins, C., ‘Lancet,’ 1833.—Hjaltelin, ‘Edinb. Med. Journ.,’ 1867; see also Dobell’s ‘Report on the Progress of Practical and Scientific Medicine,’ London, 1870.—Hodgkin, T., in his ‘Lectures on the Serous and Mucous Membrane,’ 1838.—Kerr, W. (art. “Hydatids”) ‘Cyclop. of Pract. Med.,’ 1833.—Leared, A. (prevention), ‘Med. Times and Gaz.,’ 1863.—MacGillivray, P. H. (see below, miscell. cases).—Murchison C., in his ‘Clinical Lectures,’ Lond., 1868, p. 54; 2nd edit., 1877.—Idem, “Hydatid Tumours of the Liver; their danger, their diagnosis, and their treatment,” ‘Edinb. Med. Journ.,’ 1865.—Nettleship, E., “Notes on the Rearing of Tænia echinococcus in the Dog from Hydatids, &c.,” ‘Proc. Royal Soc.,’ 1866, p. 224.—Rose, C. B., “On the Vesicular Entozoa, and particularly Hydatids,” ‘Lond. Med. Gaz.,’ 1833–4, p. 204.—Stephens, ‘Lancet,’ 1833; the ‘Veterinarian,’ 1831, p. 284.—Thompson, T. (remarks), ‘Lancet,’ 1851.—Wilson, E., “On the Structure, Classification, and Development of the Echinococcus hominis,” ‘Med.-Chir. Trans.,’ 1845.—Yates, G., “On Hydatid Disease,” ‘Assoc. Med. Journ.,’ vol. iii, 1855.
Hydatids of the liver (Bibliography No. 20 b).—Abercrombie, T., ‘Lond. Med. Journ.,’ vol. ii, p. 276, 1829.—Alison, S. S., ‘Lond. Med. Gaz.,’ 1844.—Barclay, ‘Brit. Med. Journ.,’ Nov., 1868, p. 494.—Barker, T. A. ‘Lancet,’ and ‘Path. Soc. Trans.’ 1855.—Barlow, ‘Lond. Med. Gaz.,’ 1857.—Beith, ‘Path. Soc. Trans.,’ 1852.—Bradbury, J. B. (six cases), ‘Brit. Med. Journ.,’ Oct., 1874, pp. 526–558.—Idem, ‘Brit. Med. Journ.,’ 1876, vol. ii, p. 646.—Brinton, ‘Lancet,’ 1854.—Idem, ‘Lancet,’ 1858.—Bristowe, T. S., ‘Path. Soc. Trans.,’ 1851.—Idem, ‘Path. Soc. Trans.,’ 1858.—Broadbent, W. H., “Hydatids of the Liver; Paracentesis followed by free Incision;” ‘British Med. Journ.,’ Nov. 30th, 1878.—Brodie, B. C. (supposed), ‘Lond. Med. Gaz.,’ 1828.—Brook, C., ‘Lancet.,’ Feb., 1868, p. 162.—Buchanan, ‘Surg. Med. Gaz.,’ 1861.—Budd, W., ‘Brit. Med. Journ.,’ 1859.—Chambers, T. K., ‘Lond. Med. Gaz.,’ 1846.—Cox, T., ‘Lancet,’ and ‘Med.-Chir. Trans.,’ 1838.—Crosse, J. G., ‘Lancet,’ 1837.—Curling T. B., ‘Med.-Chir. Trans.,’ 1840.—Daly, O. (supposed), ‘Brit. Med. Journ.,’ 1859.—Davies H., ‘Path. Soc. Trans.,’ 1848.—Dickenson, ‘Lond. Med. Gaz.,’ 1861; ‘Path. Soc. Trans.,’ 1862.—Duncan, A. (near the portal vein), ‘Edin. Med. and Surg. Journ.,’ 1808.—Duncan, P. M. (several cases), ‘Prov. Med. and Surg. Journ.,’ 1850–52.—Elliotson, J., ‘Lancet,’ 1832.—Fearn, S. W. (immense cyst), ‘Brit. Med. Journ.,’ Nov., 1868, p. 496.—Fletcher, T. B. E., ‘Prov. Med. and Surg. Journ.,’ 1846.—Freer, W. G., ‘Lancet,’ and ‘Prov. Med. and Surg. Journ.,’ 1845.—Gaitskell, W. (1000 discharged) ‘Lond. Med. Repository,’ 1815.—Gulland, ‘Edin. Med. Journ.,’ 1860.—Harley, J., ‘Lancet,’ May, 1866, p. 538, and ‘Med. Chir. Trans.,’ 1866.—Idem, in ‘St Thomas’s Hospital Reports,’ 1877, p. 291.—Hastings, C., ‘Brit. Med. Journ.,’ 1858.—Heaton, ‘Brit. Med. Journ.,’ Oct. 31st, 1874, p. 557.—Heckford, N., ‘Brit. Med. Journ.,’ Sept., 1868, p. 332.—Hillier, ‘Lancet,’ and ‘Path. Soc. Trans.,’ 1855.—Hutchinson, J., ‘Lancet,’ Oct., 1862.—Inglis, A., ‘Brit. Med. Journ.,’ 1859.—Leared A. (Hjaltelm’s case), ‘Path. Soc. Trans.,’ 1863.—Logan (thousands present), ‘Path. Soc. Trans.,’ and ‘Med. Times and Gaz.,’ March, 1865, p. 243.—Lyon, E. (several cases), ‘Prov. Med. and Surg. Journ.,’ 1850.—Murchison, C. (rupture through pleura), ‘Path. Soc. Trans.,’ 1861.—Idem, ‘Lancet,’ July, p. 75, 1868.—Page, ‘Brit. Med. Journ.,’ and ‘Lancet,’ Nov., 1864.—Pavy, F. W. (expectorated), ‘Med. Gaz.,’ 1851.—Idem, ‘Med.-Chir. Trans.,’ and ‘Lancet,’ Sept., 1866, p. 234.—Peacock (two cases, expectorated), ‘Lond. Med. Gaz.,’ and ‘Lancet,’ 1850.—Pemberton, O. A. (rupturing diaphragm), ‘Prov. Med. Journ.,’ 1848.—Philipson, ‘Brit. Med. Journ.,’ Oct. 31st, 1874, p. 557.—Pollock, J. (fatal), ‘Path. Soc. Trans.,’ 1854.—Idem (opening into lung), ‘Lancet,’ Jan., 1865, p. 63.—Rees, G. O., ‘Guy’s Hosp. Rep.,’ 1848.—Idem (lecture), ‘Lond. Med. Gaz.,’ 1849.—Richards, C. C., ‘Lancet,’ Jan., 1865, p. 261.—Roberts, ‘Lancet,’ 1833.—Russell, J., ‘Prov. Med. and Surg. Journ.,’ 1851.—Sadler, M. T. (Cæsarean section), ‘Med. Times and Gaz.,’ Aug., 1864, p. 141.—Salter; H., ‘Path. Soc. Trans.,’ 1860.—Savory, W. S. (letter), ‘Lancet,’ May, 1866, p. 410.—Sherwin, H. C. (fatal), ‘Edin. Med. and Surg. Journ.,’ 1823.—Sibson, F., ‘Lancet,’ July, 1868, p. 76.—Sloane, J. (puncture), ‘Brit. Med. Journ.,’ 1858.—Thompson H., ‘Path. Soc. Trans.,’ and ‘Lancet,’ 1858.—Trimnell, G. C., ‘Lond. Med. Repos.,’ 1821.—Ward, S. H., ‘Lancet,’ 1868, vol. ii, pp. 141, 305, and 474.—Wearne, V. (perforating diaphragm), ‘Brit. Med. Journ.,’ July, 1864, p. 31.—Wilks (escaping by gall-ducts), ‘Path. Soc. Trans.,’ 1860.—Young, J., ‘Edin. Med. and Surg. Journ.,’ 1829.
Hydatids of the liver and other organs together (Bibliography No. 20 c).—Beale, L. (kidney), ‘Arch. of Med.,’ vol. i, p. 31, 1857; see also same case by Bristowe, ‘Path. Soc. Trans.,’ 1853.—Billing (lungs), ‘Lond. M. and S. Journ.,’ 1831, p. 58.—Griffith, J. W. (abdomen), ‘Lond. Med. Gaz.,’ 1844.—Heslop, T. P. (kidney), ‘Month. Journ. of Med. Sci.,’ 1850.—Richardson (kidney, Dr Mackinder’s case), ‘Lancet,’ 1855.
Liver cases occurring in America (Bibliography No. 20 d).—Alexander, E. (200 present), ‘Boston Med. and Surg. Journ.,’ 1838.—Finnell, ‘New York Med. Journ.,’ 1856, p. 216.—Minot, T. (expectorated), Bost. Soc. for Med. Improv., 1859, and ‘Brit. Med. and Surg. Journ.,’ 1860, p. 297.—Webber, J. E., ‘New York Med. Times,’ 1853, and ‘Bost. Med. and Surg. Journ.,’ 1853, p. 126.
Hydatids of the lungs and pleura (Bibliography No. 20 e).—Cholmeley, ‘Guy’s Hosp. Rep.,’ 1837.—Dowling, F., ‘Australian Med. Journ.,’ 1864.—Duffin, A. B., ‘Beale’s Archives,’ 1857, vol. i, p. 253.—Hare, ‘Path. Soc. Trans.,’ 1857–8.—Hill, J., ‘Med. and Philos. Comm.,’ 1784, vol. ii, p. 303.—Hutchinson, J., ‘Path. Soc. Trans.,’ 1854.—Kirkes, W. S., ‘Med. Times and Gaz.,’ 1851.—Leared, A., ‘Path. Soc. Trans.,’ 1857.—Peacock, ‘Lancet,’ 1850.—Ridge, J., ‘Guy’s Hosp. Rep.,’ 1836, p. 507.—Rigden, G., ‘Prov. Med. and Surg. Journ.,’ 1852.—Smith, F. G., ‘North Amer. Med.-Chir. Rev.,’ 1858, p. 333.—Todd, R. B., ‘Med. Times and Gaz.,’ 1852.
Hydatids of the Kidney (Bibliography No. 20 f).—Adams, A. L., ‘Lancet,’ 1864, p. 375.—Barker, T. H., ‘Glasg. Med. Journ.,’ 1855–6, p. 439.—Duncan, ‘Liverpool Med. Journ.,’ 1834.—Dunn, J., ‘Lond. Med. Repos.,’ 1817.—Fussell, E. F., ‘Lancet,’ 1851.—Lettsom (two cases), ‘Trans. Med. Soc. of Lond.,’ 1789, p. 33.—Ward, W., ‘Lancet,’ 1846.—Wilson, J. (lecture) ‘Lond. Med. Repos.,’ 1822.
Hydatids of the spleen, omentum, and abdominal cavity (Bibliography No. 20 g).—(Anonymous), ‘Edin. Med. and Surg. Journ.,’ 1819, p. 50.—Bailey, F., ‘Lond. Med. Repos.,’ 1826.—Bright, R. (remarks on cases) ‘Guy’s Hosp. Rep.,’ 1838.—Bryant, T. (simulating ovarian disease), ‘Guy’s Hosp. Rep.,’ 1868, p. 235.—Budd, G. (omentum), ‘Med. Times,’ 1838.—Idem (rep. by Parsons), ‘Brit. Med. Journ.,’ 1859.—Burman, ‘Prov. Med. Journ.,’ 1847.—Crowther, C., ‘Edin. Med. and Surg. Journ.,’ 1826, p. 49.—Greenhow, E. H., ‘Lancet,’ 1862.—Little, W. I. (simulating ovarian disease), ‘Brit. Med. Journ.,’ 1857.—Macleay, K., ‘Edin. Med. and Surg. Journ.,’ 1806.—Morley, J. (partly pelvic), ‘Lancet,’ 1845.—Newman, W. (simulating ovarian disease), ‘Obstetr. Soc. Trans.,’ vol. iv, 1862.—Obre (peritoneal), ‘Path. Soc. Trans.,’ 1854.—Ogle, J. (omentum), ‘Path. Soc. Trans.,’ 1860.—Simpson, A. R. (peritoneal), ‘Edin. Med. Journ.,’ 1861–62.—Simpson, J. Y., ‘Assoc. Med. Journ.,’ 1854, p. 137.—Thompson, T., ‘Lancet,’ 1843.—Thompson, A. T. (simulating ovarian disease), ‘Lancet,’ 1833.
Hydatids within the pelvic cavity (Bibliography No. 20 h).—Birkett, J. (voided), ‘Guy’s Hosp. Rep.,’ 1851, p. 300.—Bryant, T., ‘Lancet,’ 1865, pp. 566 and 589.—Corrigan (ovarian), ‘Dub. Quart. Journ.,’ vol. i, 1846.—Crampton (ovarian), ‘Dub. Quart. Journ.,’ vol. ii, 1846.—Curling, T. B. (bladder), ‘Med. Times and Gaz.,’ 1863.—Farre, A., ‘Lancet,’ 1862.—Habershon, ‘Path. Soc. Trans.,’ 1860.—Hughes, ‘Lond. Med. Gaz.,’ 1861.—Hunter, T., ‘Trans. of Soc. for Improv. of Med. and Chir. Knowledge,’ 1793, p. 34.—Jennings (simulating pregnancy), ‘Dublin Quart. Journ.,’ 1855.—Lowdell, ‘Lancet,’ 1846.—Maunder, ‘Lancet,’ Sept., 1864, p. 351.—Sadler, M. T. (voided), ‘Med. Times and Gaz.’ 1865.—Simon, J. (voided), ‘Lancet,’ 1853.—Wakley, ‘Lancet,’ 1863.—White, ‘Med. Gaz.,’ 1842.
Hydatids of the heart and blood-vessels (Bibliography No. 20 i).—Bigger, ‘Dub. Path. Soc.’ Rep. in ‘Lancet,’ 1830.—Budd, G., ‘Path. Soc. Trans.,’ 1839.—Coote, H., ‘Lond. Med. Gaz.,’ 1854.—Goodhart, ‘Brit. Med. Journ.,’ Nov. 27, 1875.—Price, D., ‘Lond. Med. Repos.,’ 1822.—Smith, R., ‘Lancet,’ 1838.—Trotter, ‘Chem. and Med. Essays,’ 1736.—Wilks (Henderson’s case), ‘Path. Soc. Trans.,’ 1860.
Hydatids of the brain and cranial cavity (Bibliography, No. 20 k).—(Anonymous) ‘Lancet,’ April, 1864, p. 444.—Bailey, F., ‘Lancet,’ 1825; ‘Lond. Med. Repos.,’ 1826.—Barker, T. A., ‘Path. Soc. Trans.,’ 1858.—Bennett, J. R., ‘Med. Times and Gaz.,’ Jan., 1862.—Berncastle, J., ‘Lancet,’ 1846.—Bree, C. R., ‘Lancet,’ 1837.—Brittan, F., ‘Brit. Med. Journ.,’ 1859.—Burton, ‘Med. Times and Gaz.,’ 1862.—Dagleish, G., ‘Lancet,’ 1832.—Fletcher, T. B. E., ‘Assoc. Med. Journ.,’ vol. iii, p. 161, 1855.—Headington, ‘Edin. Med. and Surg. Journ.,’ vol. xv, 1819, p. 504.—Helsham, ‘Med. Comment.,’ vol. xiii, 1788, p. 289.—Macnamara, W. H., ‘Brit. Med. Journ.,’ vol. ii, p. 616, 1876.—Rigden, G., ‘Prov. Med. and Surg. Journ.,’ 1852.—Stewart, J., ‘Lancet,’ 1848.—Sturton, ‘Lancet,’ 1840.—Wilson, E., ‘Lancet,’ 1848.
Hydatids of the bones (Bibliography No. 20 l).—Cobbold, T. S., “Notice of Specimens of Tibial Hydatids in Nottingham,” ‘Brit. Med. Journ.,’ 1865, and in the ‘Veterinarian,’ Feb., 1866.—Idem, “Notice of Specimens from the Tibia in the Mid. Hosp. Museum,” ibid.—Cooper, A., “Foster and Lucas’s case affecting the Tibia,” ‘Surg. Essays,’ Lond., 1818.—Coulson, W. (tibia), ‘Med.-Chir. Trans.,’ 1858; see also Daubeny, H., ‘Path. Soc. Trans.,’ 1858.—Erichsen, J. E., in his ‘Surgery,’ 4th edit., pp. 728, 823, and 948, Lond., 1864.—Hunter, W. (tibial, Mus. Spec. at Glasgow), quoted in ‘L’Expérience,’ 1838, p. 531.—Keate, R. (os frontis), ‘Med.-Chir. Trans.,’ 1819.—Lambert, J. (tibia), ‘Lancet,’ 1826.—Thompson, H. (Hearne’s tibial case), ‘Path. Soc. Trans.,’ 1859.—Webster, F. W. (tibia), ‘New Eng. Med. Journ. of Med. and Surg.,’ 1819.—Wickham, W. J. (tibia), ‘Lond. Med. and Phys. Journ.,’ 1827.
Hydatids of the breast, muscles, and soft parts (Bibliography No. 20 m).—Adams, J. (abdominal parietes), ‘Lancet,’ 1851.—(Anonymous), “Hyd. in the Eye of a Girl,” ‘Boston Med. and Surg. Journ.,’ 1849, p. 28.—Baird, J. (muscles), ‘Edin. Med. and Surg. Journ.,’ 1821.—Birkett, J. (mammary), ‘Lancet,’ March, 1867, p. 263.—Brodie, B. C. (near scapula), ‘Lancet,’ 1818.—Bryant, T. (thigh), ‘Path. Soc. Trans.,’ 1859.—Idem (thigh), ‘Lancet,’ 1862.—Idem (breast), ‘Path. Soc. Trans.,’ and ‘Lancet,’ Nov., 1865, p. 565.—Cholmeley (from right side), ‘Lancet,’ 1826.—Cooper, B. B. (neck and breast, two cases), ‘Guy’s Hosp. Rep.’ 1851.—Idem, in Birkett’s work on the ‘Breast,’ p. 183; the ‘Institute,’ vol. i. p. 119, 1850.—Dixon, J. (neck), ‘Lancet,’ 1851.—Henry, M. (breast), ‘Lancet,’ Nov., 1861, p. 497.—Hewndon, A. (neck), by Tyson, in ‘Phil. Trans.,’ 1706–7, vol. xxv, p. 2344.—Jones, S. (subperitoneal), ‘Path. Soc. Trans.,’ 1854.—Rankine, J., “Supposed Hyd. in Synovial Sheaths,” ‘Edin. M. and S. Journ.,’ 1830.—Sands (neck), ‘Amer. Med. Times,’ 1861, vol. ii, p. 376.—White (breast and arm), ‘Lancet,’ 1839.
Hydatids of uncertain seat, or miscellaneous cases and observations (Bibliography No. 20 n).—Barrett, ‘Lond. Med. Gaz.,’ 1838.—Durrant, C. M. (Ipswich Hosp.), ‘Prov. Med. and Surg. Journ.,’ 1851.—Fagge, H., ‘Lancet,’ July, 1868, p. 76.—Greenhow, J. M. (intestinal), ‘Lancet,’ 1823.—Howship, J. (case, with speculative remarks), ‘Edin. M. and S. Journ.,’ 1835.—MacGillivray, P. H. (orbit, &c.), ‘Austral. Med. Journ.,’ Aug., 1865.—Idem, ibid., March, 1867.—Idem (3rd series of cases), ibid., July, 1872.—Idem (treatment with kamala), ibid., July, 1872.—Markham, W. O., “On the ‘son hydatique,’” ‘Assoc. Med. Journ.,’ 1856, p. 1072.—Musgrave (letter to Sir H. Sloane), ‘Phil. Trans.,’ vol. xxiv, 1704–5.—Phillips, ‘Lancet,’ July, 1868, p. 77.—Russell, J. J., ‘Dub. Journ.,’ 1838.—Salter, H., ‘Path. Soc. Trans.,’ 1854.—Ward, T. O., ‘Lond. Med. Gaz.,’ 1837.
Hydatids of animals (acephalocysts) (Bibliography No. 20 o).—Böllinger (see Bibl. No. [49]).—Cobbold, ‘Manual,’ l. c. (Bibl. No. 2), 1874.—Crisp, E. (in a turkey and in hogs), ‘Path. Soc. Trans.,’ 1863.—East, J. (see Steel).—Findeisen, “Echin. in der Lunge,” ‘Repertorium für Thierheilkund.,’ 1875, s. 48.—Gross, S. D. (in swine), ‘Elements of Path. Anat.,’ 1845, p. 118.—Hunter, J., “A Cyst (hydatid) which was filled with water, formed in and filling up the Bone (humerus) of an Ox (from Hunterian MS.),” more fully described in the ‘Catalogue of the Mus. Lond. Coll. Surg.,’ “Path.,” vol. ii, prep. No. 864, p. 201, 1847.—Idem, “On Hydatids in Sheep” (supp. to Trans. of a Soc., l. c., supra), 1793.—Hutchinson, J., “Hydatid in the Eye of a Horse,” ‘Path. Soc. Trans.,’ and ‘Lancet,’ 1857.—Huxley, T. H., “On the Anatomy and Development of Echinoc. veterinorum (from a Zebra),” ‘Proc. Zool. Soc.,’ 1852.—Kirkman, J., “Chronic Disease of the Bones of the Cranium of a Horse, associated with the existence of Hydatids within a Cyst at the inferior part of the Orbit,” the ‘Veterinarian,’ vol. xxxvi, p. 77, 1863.—Lepper, “Hydatids in the Kidney of a Lamb,” the ‘Veterinarian,’ 1863, p. 524.—Martin, J. (in the liver of a sow), ‘Vet. Assoc. Trans.,’ 1842–3, pp. 330 and 364.—Moorcroft, W. (in the brain of a cow), ‘Med. Facts and Observ.,’ vol. iii, 1792.—Morgan, A. (in the brain of a mare), the ‘Veterinarian,’ 1855, p. 396.—Peech, S. (in the muscles of a horse), the ‘Veterinarian,’ 1854, pp. 80 and 209.—Siedamagrotzky (see Bibliog. No. [49]).—Simonds, J. B., “Remarks on Mr. Scruby’s case of Hydatids in the Liver of a Sheep,” ‘Trans. of Vet. Assoc.,’ 1842–3, p. 331.—Steel, J. H. (in liver of a cow; Mr East’s case), the ‘Veterinarian,’ 1878, p. 441.—Stoddart (in liver of a cow), the ‘Veterinarian,’ 1838, p. 637.—Thudichum, J. L. W. (in sheep), ‘Assoc. Med. Journ.,’ 1856, p. 195.—Vincent, J. P. (in horse, causing lameness), the ‘Veterinarian,’ 1848, p. 674.—Walker, A. (in the liver of a sow), ‘Vet. Record,’ 1846, p. 185.—Woodger (in the brain of a horse), the ‘Veterinarian,’ 1863, p. 75.
Foreign Literature. Human Hydatids (Bibliography No. 20 p).—Böcker, ‘Zur statistik der Echinoc.,’ Berlin, 1868.—Davaine, C., ‘Traité’ (l. c., Bibl. No. 1), p. 350, 1860; 2nd edit. p. 369, 1877.—Idem, “Recherches sur les hydatides, les échinoc., &c.,” ‘Gaz. Méd. de Paris,’ 1855.—Idem, “Recherch. sur le frémissement hydatique,” ‘Gaz. Med.,’ 1862.—Eschricht, ‘Danske videnskab. selsk. forhandl.,’ 1853.—Finsen, ‘Ugeskrift for Läger,’ Bd. iii, 1867; see also ‘Brit. and For. Med.-Chir. Rev.,’ 1868, p. 324; also ‘Schmidt’s Jahrb. für Med.,’ 1867, s. 181.—Guérault, “Sur la maladie hydatique, &c.,” ‘Gaz. des Hôp.,’ 1857.—Hearn, A. W., ‘Kystes hydatiques du poumon et de la plèvre,’ Paris, 1875.—Heller, A., “Die Schmarotzer der Leber,” von Ziemssen’s ‘Handbuch d. Spec. Pathol. und Therapie,’ Bd. viii, s. 559.—Krabbe, H., “Maladie causée en Island par les Échinocoques,” in his ‘Recherches Helminthologiques,’ p. 41, Paris, 1866; ‘Helm. Undersøgelser,’ Copenhagen, 1865, p. 40.—Idem, “Die echinoc. der Islander,” ‘Archiv für Naturg.,’ 1865, and in ‘Den med. Skole i Reykjavik,’ 1868.—Idem (see T. R. Jones, Bibl. No. 2).—Leuckart, R. (l. c., Bibl. No. 1), Bd. i, s. 335, 1863; Bd. ii, s. 859, 1876.—Linder, ‘Echinococcen der Leber,’ Leipsic, 1869.—Naunyn, ‘Archiv für Anat., Physiol.,’ &c., 1862–3.—Neisser, A., ‘Die echinococcen Krankheit.,’ Berlin, 1877.—Rassmussen, ‘Bidrag til Kundskab om Echinoc.,’ &c., 1865; see also ‘Brit. and For. Med.-Chir. Rev.,’ 1866, p. 285, and 1867, p. 424.—Schmalfuss, ‘Ueber Leberechinococcus,’ Breslau, 1868.—Tommasi, T., ‘Storia di un caso di Echinoc.,’ &c., in an appendix (Nota) to his edition of my ‘Lectures’ (Vermi, &c.), Milan, 1873, p. 153.
Note.—As Leuckart, Davaine, and especially Neisser offer exhaustive analyses of the French and German literature of human hydatids, I will only give the authors’ names attached to such additional foreign memoirs and cases as have been published in England. These are quoted in my ‘Introductory Treatise on the Entozoa.’ Full references will be found in the “Bibliography” of that work under the following heads:—Andral (pulmonary veins), Angeli, Auglagnier (bladder), Baillarger (brain), Boinet (liver), Chaubasse (abdominal), Cruveilhier (liver and spleen), Dupuy (hydatids in animals), Demarquay (liver), Dupuytren (muscles and viscera, &c.), Fouquier (lungs), Gayet (liver), Goyrand (liver), Guérard, Guillot, Hedinger (brain), Heintz (liver), Held (thigh), Heller (lip), Klencke (blood, &c.), Kuhn, Lafforgue (liver), Legroux, Livois, Luschka (liver), Martinet (brain, liver), Maug (hand), Meissner, Micheá (brain), Moissenet (liver), Montault (brain), Morrisseau, Nicolai (liver), Oerstelen (kidney), Pohl (abdominal), Quinquirez (bladder), Récamier (abdominal), Richard (liver), Roget (lungs), Roux (pelvic), Rüttel (brain), Schleissner, Sichel, Sömmering (eye), Skoda, Tomowitz (bladder), Zeder (brain).
Additional references to the echinococcus disease as it occurs in animals will be found at the close of the section devoted to the parasites of Ruminants (Bibliography No. [49]), and I shall recur to the subject of mortality from “worms” further on.

