SECTION III.—Nematoda (Round Worms).

Trichina spiralis, Owen.—The progressive triumphs of biological science are well epitomised in the history of the discovery, and in the record of the gradual manner in which we have obtained our present complete knowledge of the structure and development of this small entozoon.

Although the facts connected with the original discovery are clear and indisputable, much error still pervades foreign literature on this head. Without a doubt Mr Hilton was the first to suggest the parasitic nature of the capsules first spoken of as “gritty particles.” With Sir James Paget, however, rests the true discovery and determination of the nematoid character of the worm itself. With Professor Owen remains the honor of having first scientifically verified, described, and named the entozoon. Some have sought, without good reason, to alter Owen’s nomenclature; yet not only the generic title, but nearly all else that he wrote concerning the parasite, must be allowed to stand.

In relation to the capsules, it is true that prior claims of discovery have been put forward; but whilst Peacock’s preparation of the “little bodies” testifies to the fact of his having seen the capsules before other English observers, including Wormald, it was Hilton who first surmised their parasitic character. As for the claims of Klencke and Tiedemann, they are practically of no value, even if it be admitted that the former may have at an early period seen something resembling this nematode, and that the “stony concretions” encountered by the latter were degenerated capsules.

On no subject have I desired to write with more accuracy and precision than on this, and lest the above remarks should appear to be somewhat partial, I now purposely re-state the facts as they have presented themselves to me during a full and prolonged study of the entire literature of the subject. If it be asked with whom rests the discovery of Trichina, the reply must be framed with a due regard to precise issue at stake. The first recognition of the capsules as parasitic products is fairly claimed by Hilton; the worm by Paget; the zoological allocation and nomenclature by Owen; the adult worm by Virchow; the developmental phenomena by Leuckart; the rearing of the larvæ by Herbst; and to crown all, the clinical importance of the parasite by Zenker. Due regard being had to these relative claims, I think the following more extended statement will be found to be true and just in all its bearings.

Fig. 35.—Sex­ual­ly ma­ture Tri­chi­na spi­ra­lis; male. After Leuckart.

In the year 1834 Sir James Paget, then a student, first actually determined the existence of the nematode entozoon, which was subsequently more completely described by Professor Owen. The discoverer was assisted by the celebrated botanist, Robert Brown, who lent his microscope for the purposes of examination. In the following year Professor Owen first scientifically described and named the flesh-worm (Trichina spiralis) in the published transactions of a learned society. He first fully interpreted the true zoological position of the parasite. Sir J. Paget’s colleague, Mr. Wormald, had “more than once” previously noticed the characteristic specks “in subjects dissected at St Bartholomew’s Hospital.” He transmitted the individual specimens which enabled Owen to draw up his valuable paper. It is clear, however, that Mr Hilton was the first to suggest the parasitic and animal nature of the specks observed in human muscle. As the “find” was made in 1832, he anticipated Wormald in his observation of the “gritty” particles in dissecting-room subjects, describing the bodies as “probably depending upon the formation of very small Cysticerci.” Nevertheless, according to Dr Hodgkin, “the first observation of these little bodies was made in 1828” by Mr H. Peacock. The latter made a dry preparation of the sterno-hyoideus muscle to display the specks. That preparation is the oldest in existence, and may be seen in Guy’s Museum. It may further be remarked that Henle, Küchenmeister, Davaine, myself, and others, have pointed to a notice by Tiedemann as probably, or possibly, indicating a prior observation of the specks. Leuckart rejects the evidence. Dr Pagenstecher appears to be in doubt as to the nature of the bodies in question. As the passage in question possibly gave a rough and imperfect description of the now familiarly known calcified Trichina capsules, I give a translation of it (Froriep’s ‘Notizen,’ 1822, Bd. i, s. 64):—“At a post-mortem examination of a man who had been a great brandy-drinker, and who died from thoracic dropsy after several severe attacks of gout, Tiedemann found white stony concretions in most of the muscles, especially at the extremities. They lay in the cellular tissue between the fibre-bundles, frequently also attached to (or near) the walls of the arteries, being from two to four lines long, and roundish. The chemical examination conducted by Gmelin yielded seventy-three parts phosphate of lime, seven parts carbonate of lime and twenty parts animal matter, resembling albumen or fibrin.” In regard to this notice Dr Pagenstecher (‘Die Trichinen,’ s. 4) has remarked that Tiedemann’s “communication was also referred by Henle to such a parasitic development when he subsequently found Trichina; and in this sense it was afterwards received by Diesing, Küchenmeister, and Davaine. But it has been rejected by Leuckart on account of the size (from two to four lines) and seat of the concretions. True, it has never yet been observed that the capsuled Trichina (not measuring a tenth part of that diameter) subsequently constituted centres of gouty deposit exceeding their own bulk, nor is it likely that they should. Seeing, however, as we often do, that errors respecting size have crept into works on Trichina, we shall not need to lay much stress upon these statements; still less so since the notice is very superficial, and its character is essentially of a physiologico-chemical nature. But this, at least, seems to us decisive, that when Bischoff, at Heidelberg, wrote on a case which occurred in Heidelberg, not one single word was mentioned respecting a former case, if such should have happened, although Tiedemann and himself were on terms of close intimacy.” So much for Tiedemann. In regard to Klencke’s claims, the same observer writes:—“Klencke has asserted that he had already drawn Trichinæ in the year 1829, and that he had seen them again in 1831. This subsequent statement has no kind of confirmation. The unreliableness, mistakes, and self-deceptions in the helminthological writings of Klencke have been repeatedly exposed some twenty years ago.” Prior to this criticism by Pagenstecher, Professor von Siebold and several other well-known helminthologists had already commented on Klencke’s assertions in the same destructive manner.

In regard to the experimentation and the valuable instruction thus acquired, it appears that Herbst was the first to rear muscle-flesh-worms, or encapsuled Trichinæ, in animals (1850); whilst Virchow was probably the first to rear and recognise sexually-mature intestinal Trichinæ in a dog (‘Deutsche Klinik,’ 1859, s. 430); yet, without doing injustice to others, it must be added that it remained for Prof. Leuckart to offer a full, complete, and correct solution of the principal questions relating to the source and mode of genesis of the flesh-worm (1860). Leuckart likewise did good service by disproving the erroneous views that had been put forth by Küchenmeister. Lastly, all these brilliant results culminated in the clinical observations of Zenker, who opened out a new epoch in the history of trichinal discovery. Professor Zenker was the first to detect the young in the act of migration, and he likewise primarily demonstrated the fact that the larval parasites were capable of producing a violent disease in the human body.

Never in the history of biological science have more valuable issues followed the method of experiment upon animals. Not only has human life been thus saved, but animal life also. State-medicine and sanitation have received an immense impulse. The good that has already resulted is simply incalculable; nevertheless, in the eyes of a set of ignorant fanatics who infest this country, all experiments “involving cruelty to animals” ought to be prevented at any cost. The further progress of biological science in England has hereby sustained a severe check.

The Trichina spiralis in its sexually-mature state is an extremely minute nematode helminth, the adult male measuring only the 1/18th of an inch, whilst the perfectly developed female reaches a length of about 1/8″. The body is rounded and filiform, usually slightly bent upon itself, and rather thicker behind than in front, especially in the males. The head is narrow, finely pointed, unarmed, with a simple, central, minute oral aperture. The posterior extremity of the male is furnished with a bilobed caudal appendage, its cloacal or anal aperture being situated between these divergent appendages. The penis consists of a single spicule, cleft above, so as to assume a V-shaped outline. The female is stouter than the male, bluntly rounded posteriorly, having the genital outlet placed far forward, at about the end of the first fifth of the long diameter of the body. The eggs measure 1/1270″ from pole to pole. The mode of reproduction is viviparous.

Fig. 36.—Larval Trichina coiled within its capsule. After Bristowe and Rainey.

As commonly observed in the human body our young Trichinæ appear as spirally-coiled worms in the interior of small, globular, oval, or lemon-shaped cysts, which latter appear as minute specks scarcely visible to the naked eye. These specks resemble little particles of lime, being more or less calcareous according to the degree of degeneration which their walls have undergone. In shape and general aspect they are not altogether unlike the eggs of certain nematoid worms, but their size alone sufficiently distinguishes them. They measure on an average 1/78″ in length by 1/130″ in breadth. The organised capsules are not essential to the further development of the parasite, and are rather to be regarded as abnormal formations, or rather, perhaps, as products resulting from an effort of nature to protect and thus prolong the life of the occupant. They are frequently altogether wanting. The capsuled Trichinæ measure 1/23″ in length by about 1/630″ in breadth. When fully formed they not only exhibit a well-marked digestive apparatus, but also reproductive organs, which are often, indeed, sufficiently developed to determine the sex.

Notwithstanding the large number of experiments that have been more or less recently made by investigators, little or nothing has been discovered calculated to disturb the conclusions set forth by Leuckart, who writes as follows:—“(1) Trichina spiralis is the juvenile state of a little round worm, previously unknown, to which the generic title of Trichina must remain attached. (2) The sexually mature Trichina inhabits the intestinal canal of numerous warm-blooded animals, especially mammalia (also of man), and constantly in great numbers. The duration of its life extends from four to five weeks. (3) At the second day after their introduction the intestinal Trichinæ attain their full sexual maturity. (4) The eggs of the female Trichinæ are developed within the uterus of the mother, into minute filaria-like embryos, which, from the sixth day, are born without their egg-shells. The number of young in each mother-worm is at least from ten to fifteen thousand. (5) The new-born young soon after commence their wandering. They penetrate the walls of the intestine and pass directly through the abdominal cavity into the muscles of their bearers, where, if the conditions are otherwise favorable, they are developed into the form hitherto known. (6) The directions in which they proceed are in the course of the intermuscular connective tissues. (7) Only the striped muscle (that of the heart excepted) contains Trichinæ. The majority of the wandering embryos remain in those sheathed muscular groups which are nearest to the cavity of the body, especially in those which are smaller and most supplied with connective tissue. Speaking generally, their number decreases with the distance from the abdomen, being, however, more numerous in the anterior half of the body. (8) The embryos penetrate into the interior of the separate muscular bundles, and here already, after fourteen days, acquire the size and organisation of the well-known Trichina spiralis. (9) Soon after the intrusion of the parasite the infested muscular fibre loses its original structure, the fibrillæ collapse into a finely granular substance, whilst the muscular corpuscles change into oval nucleated cells. (10) The infected muscular bundle retains its original sheathing up to the time of the complete development of the young Trichinæ, but afterwards its sarcolemma thickens, and begins to shrivel at the extremities. (11) The spot inhabited by the rolled-up parasites is converted into a spindle-shaped widening, and within this space, under the thickened sarcolemma, the formation of the well-known lemon-shaped or globular cysts commences by a peripheric hardening and calcification. This degeneration commences several months after the wandering. Immature muscle-Trichinæ are not capable of producing infection. (12) The migration and development of the embryos also take place after the transportation of impregnated Trichinæ into the intestines of a new host. (13) The further development of the muscle-Trichinæ into adult animals is altogether independent of the formation of the calcareous shell, and occurs as soon as the former have reached their completion. (14) Males and females are already recognisable in their larval state. (15) The immigration of the Trichina-brood in masses produces very grave or even fatal consequences, such as peritonitis (from the embryos perforating the intestinal walls), pain, and paralysis (resulting from the destruction of the infected muscular fibres). (16) The infection of man occurs especially through swine. (17) The muscle-Trichinæ are so capable of resistance that they are by no means in all cases destroyed by the ordinary methods of roasting, cooking, pickling and smoking. (18) As a rule, swine obtain Trichinæ from rats, to which latter we also as the natural bearers have to convey them. Microscopic examination of flesh is, therefore, urgently recommended as a public preventive against all danger from Trichinæ.”

Fig. 37.—Immature female Trichina from muscle. After Leuckart.

As a summary the above conclusions are well nigh exhaustive; but whilst I purposely avoid entering into mere clinical details, there are points of hygienic interest to which I must allude. Thus, as regards the number of larval Trichinæ in any one “bearer” at a time, this, of course, must be extremely variable, but it may amount to many millions. In one of the cats on which Leuckart experimented, he estimated a single ounce of its muscle-flesh to harbour no less than 325,000 Trichinæ. I find that a relatively similar degree of infection in an ordinary human “bearer” would yield thirty millions. In the case of one of my own experimental animals, a pig, I reckoned that there were at least sixteen millions of Trichinæ. The larvæ were about ten months old and enclosed within perfectly formed capsules; nevertheless, the animal had never displayed any symptom of irritation. In a trichinised human subject, examined by Dr Thudichum, it was estimated that 40,000,000 parasites were present. My own estimate, calculated from specimens of muscle obtained from the same case, gave 100,000,000 as the approximate number of worms present. In the only outbreak of Trichinosis occurring in England, details of which will be given further on, I found that the flesh of the hog that had caused the local endemic contained upwards of 80,000 Trichinæ to the ounce. The consumption of a pound of such flesh would be capable of producing a collective progeny of something like 400,000,000 within the human “bearer.”

In the year 1865 I conducted a series of experiments upon upwards of a score of animals, including seven birds, the latter all yielding only negative results. So far as muscle-Trichinæ were concerned my experiences accorded with those of Professors H. A. Pagenstecher and C. J. Fuchs, at the Zoological Institute in Heidelberg. These experimenters found that the ingested muscle-Trichinæ acquired sexual maturity within the intestinal canal of their avian “hosts;” but they never found young Trichinæ in the muscles of the birds, nor did they perceive any evidences of an attempt on the part of the escaped embryos to effect a wandering or active migration on their own account. Clearly, if the bird’s intestinal canal were a proper territory for the residence of sexually mature Trichinæ, we should have found abundance of wandering non-encapsuled flesh-worms and also sexually-immature muscle-Trichinæ enclosed in well-formed capsules. Not a few persons still entertain the notion that Trichinæ are liable to infest all kinds of warm-blooded, and even also many kinds of cold-blooded animals, such as reptiles and fishes. Certain nematodes found in earth-worms have been described as Trichinæ; and consequently, pigs and hedgehogs were said to become trichinous through eating these annelids. The minute flesh-worms described by Bowman from the muscle of the eel are not true Trichinæ, any more than the somewhat similar parasites which Eberth found to infest the muscles of the frog. The same may also be said of Dr Salisbury’s urinary Trichinæ, which are the larvæ of Filaria Bancrofti.

Deducting the seven birds, and also six other animals where no examination after death was possible, I ascertained the result of my worm-feedings in sixteen instances. Nine of the experiments were entirely successful, the infected animals comprising four dogs, two cats, one pig, one guinea-pig, and a hedgehog.

Carnivorous mammals, especially those subsisting on a mixed diet, are the most liable to entertain Trichinæ, but it is quite possible to rear them in herbivora. Thus, Pagenstecher and Fuchs succeeded in rearing muscle-Trichinæ in a calf, and they found three female intestinal Trichinæ in a goat, but apparently no muscle-flesh-worms, although twenty-seven days had elapsed since the first feeding with trichinised rabbit’s flesh. In three sheep on which I experimented no trace of Trichinæ could be found. There is no practical need for any further experiments on herbivora, for it is quite clear that, in their natural state, herbivorous mammals can seldom have an opportunity of infesting themselves, whilst the reverse is the case with swine, carnivorous mammals, and ourselves. Because many quadrupeds become trichinous, it does not follow that all mammals are liable to be infested. In the case of most parasites we find the species limited to a larger or smaller number of hosts. On the other hand, in not a few cases, the range of the entozoon is limited to a single territory or host.

In conducting the experiments above mentioned I was assisted by Professors Simonds and Pritchard, of the Royal Veterinary College. As they were the only researches conducted on any considerable scale in England, I subjoin a few details of them. Dr Thudichum’s experiments were, I believe, confined to rabbits.

Exps. 1 and 2.—On the 15th of March, 1865, an ounce of flesh containing Trichinæ was administered by myself to a black bitch. The dog being destroyed five days subsequently, neither intestinal nor muscle-Trichinæ were discovered. It was thought that the dog had thrown up the bolus, which was strongly saturated with chloride-of-zinc solution. The bolus consisted of a portion of the pectoralis major of a subject brought to the dissecting-room at the Middlesex Hospital. The cysts were highly calcified, but the majority contained living embryos, which were quite unaffected by the zinc solution injected into the body to prevent decomposition. At the same date a small white puppy was experimented on and examined with precisely the same results. In either case it was too early to expect muscle-flesh-worms to have become developed.

Exp. 3.—Half an ounce of the same trichinous human flesh was given (at the same date) to a black-and-tan puppy reared at the Royal Veterinary College, a second “feeding” being administered on the 21st of March, or six days after the first. In this case Mr Pritchard, who fed the animal, took the precaution to chop the muscle into small pieces, and to mix it with other food, in order that the flesh might be the more readily retained in the stomach. The puppy was not destroyed until the 15th of the following June, when, on examination, numerous encysted but non-calcified muscle-Trichinæ were found in all the voluntary muscles subjected to microscopic scrutiny.

Exp. 4.—An ounce of the same flesh was given to a dark-colored pig on the 15th of March, and again on the 20th, several other “feedings” being also administered during the month of April, 1865. It was destroyed on the 16th of May, but no Trichinæ were detected.

Exp. 5.—An ounce of the same human muscle-flesh administered to a small sheep (which was subsequently killed on the 29th of June) also produced negative results.

Exps. 6 and 7.—“Feedings” were at the same time administered to a rat and mouse. The mouse died on the 2nd April, when I examined its muscles without success. On the following day the rat unfortunately made its escape, but whether trichinised or not cannot be said.

Exp. 8.—An ounce of trichinous human flesh was given to a donkey, in the form of “balls,” on the 20th of March; and during the month of June four other separate “feedings” with trichinous dog’s flesh were also administered. The animal was removed from the College without the result being ascertained.

Exp. 9.—From the 15th to the 20th March, 1865, inclusive, three small Trichinæ “feedings” were likewise administered to a guinea-pig. This little animal was not destroyed until the 15th of the following June, when a positive result was obtained. The pectoralis transversus and other muscles were found to harbour a considerable number of encysted Trichinæ.

Exp. 10.—On the 20th March, and again on the 21st (1865), “feedings” from the same human subject were administered to a hedgehog. On the 26th of April the animal seemed to be attacked with symptoms of Trichinosis. It refused food, kept its head extended, and the eyelids closed. On the 27th it appeared much worse, and on the morning of the 28th it was found dead. On the 29th I examined the flesh, and found abundance of living Trichinæ in the muscles. The capsules were very thin and transparent. A few days later Mr Simonds also examined the flesh, and confirmed this result.

Exps. 11 and 12.—Two chickens were fed, on the 21st of March, with the same material. One of the birds died on the 24th, when I examined the intestines and detected one or two very minute nematodes, which, at the time, I believed to be imperfectly developed Trichinæ, but subsequently saw reason to alter my opinion. The other bird died on the 3rd of April, and certainly contained no muscle-Trichinæ.

Exp. 13.—On the 22nd and 23rd of March “feedings,” amounting to an ounce of flesh in all, were given to a mole. This animal was returned to the care of Mr Charles Land, who had previously sent it to the Veterinary College. He subsequently reported that, after observing the mole to be “working” for two or three days, he lost all trace of it, and concluded that it had either escaped or was dead.

Exp. 14.—On the 1st and 2nd of May portions of the left fore extremity of the hedgehog (in which we had successfully reared Trichina from the Middlesex-Hospital subject) were offered by Mr Simonds to a cat. It ate the flesh very readily, consuming the entire limb. On the 15th of the following June the cat was killed, when living Trichinæ were found within all the muscles which we examined.

Exp. 15.—At the same dates a young terrier dog was similarly treated, but did not take the “feeding” so readily. In this case the left hind extremity of the hedgehog was employed, and what was not eaten voluntarily was forcibly introduced. On the 1st of June the dog was attacked with “distemper,” and died on the 8th of the same month. On examination we found several living Trichinæ in the sterno-maxillaris and other muscles. Some of the parasites were encysted.

Exp. 16.—From the 9th to the 12th of June inclusive four separate worm-feedings with the flesh of the trichinised terrier-dog were administered to a crow. The bird was killed some months afterwards and sent to me for examination. Its muscles were entirely free from Trichinæ.

Exp. 17.—From the 9th to the 17th of June inclusive seven separate worm-feedings were administered to a pig. One of the “feedings” was with the trichinised guinea-pig’s flesh, the others from the dog. This animal was not destroyed until the 4th of April, 1866, when all the muscles which I examined were found extensively infested with Trichinæ. There were probably not less than 16,000,000 present, all being alive and enclosed within perfectly-formed capsules, none of which latter exhibited any traces of calcareous deposition.

Exp. 18.—Four separate feedings with trichinous dog’s flesh were likewise, at the same dates as the foregoing, administered to a rat. This experimental animal, however, like the one previously mentioned, contrived to make its escape. I fear it was well trichinised.

Exp. 19.—About the same date trichinous “feedings” were given to a black puppy (bred at the Veterinary College). The dog was killed on the 18th of August, 1866, having also been made the subject of an echinococcus-feeding, when I found abundance of encysted Trichinæ within the voluntary muscles.

Exp. 20.—Four separate worm-feedings with the flesh of the trichinised guinea-pig were given to a sheep on the 15th, 16th, 17th, and 19th days of June, 1865. The experimental animal was destroyed on the 29th of the same month, but the result was negative.

Exps. 21 and 22.—“Feedings” with the guinea-pig’s flesh—four in the one case and three in the other—were also administered by Mr Simonds (from the 15th to the 19th of June, inclusive) to a chicken and goose respectively. These birds were destroyed some months afterwards and sent to me for examination, but the most careful scrutiny failed to detect any Trichinæ within their muscles. The goose was cooked and eaten without the slightest hesitation. The chicken I found too tough for consumption.

Exp. 23.—On the 28th of March, 1866, I obtained a small quantity of muscle from a highly trichinised German subject, who died from the effects of an accident at the London Hospital the day previous. The case was fully reported by Dr Thudichum in a new journal, called ‘Scientific Opinion’ (No. 4, April 25th 1866, p. 55). During the same day (at 2.30 p.m.) I fed a dog with part of this human flesh. On the morning of the 31st I killed the dog, and examined the intestinal canal (at 11.30 a.m.), which revealed the presence of sexually-mature living Trichinæ. The males (of one of which I retain an accurate figure) displayed the characteristic bilobed caudal appendage, leaving no doubt as to their source and nature. I have mentioned the precise time of the experiment, in order to show that a period of sixty-nine hours proved amply sufficient for the development of the young muscle-flesh-worms of the human subject into the sexually-mature adult Trichinæ of the dog.

Exp. 24.—With another portion of this human flesh (taken from the muscles of the tongue) in which the Trichinæ were extraordinarily abundant, I fed a cat. In about ten days the animal showed the most marked symptoms of trichinosis. It refused to eat; the eye lost its lustre; the body became very thin, and I thought the animal would die. By very great care, keeping it warm before the fire, and subsequently inducing it to take a little milk, the creature improved, gained flesh, and eventually recovered. About three months afterwards I destroyed this cat, when on examining the panniculus carnosus, latissimus dorsi, and other superficial muscles, I found great quantities of well-developed, capsuled Trichinæ. Although the animal had swallowed scarcely a quarter of an ounce by weight of the infested flesh, yet thousands of parasites had been propagated and dispersed throughout its muscular system. In this way the helminthiasis nearly proved fatal to my cat. As has been already stated, Dr Thudichum, who I believe had an opportunity of examining the corpse of this trichinised German, estimated the number of parasites in his body at 40,000,000. I do not think this estimate likely to be exaggerated, for if all the flesh had been infested to the extent I found to obtain in respect of the muscles of the tongue, I believe 100,000,000 would have been nearer the mark. In places the point of a needle could scarcely be thrust between the capsules, so closely were they agglomerated.

Exp. 25.—From the 19th to the 25th of April, 1866, inclusive, daily administrations of trichinous pork, in the form of bolus, were made to a sheep by Mr Pritchard. The Trichinæ were obtained from one of our experimental animals at the Veterinary College, about two ounces of the flesh being given at each feeding. The flesh of this sheep (destroyed in the following November) failed to give any indication of the presence of parasites.

Exps. 26 and 27.—About the same time, and occasionally at intervals extending over a period of five weeks, Mr Pritchard also fed two young fowls with the same trichinous pork. Towards the close of October, 1866, both birds died, when Mr Pritchard carefully examined the flesh of them, but failed to find any trace of Trichinæ.

Exps. 28 and 29.—From April 2nd to the 9th of the same month, 1866, inclusive, feedings with trichinous pork were likewise given to two dogs. These animals were destroyed and examined by Mr Pritchard in November, 1866, but the result appears to have been negative.

It is perfectly certain that the infection of man by Trichina is invariably due to the ingestion of verminiferously diseased meat, and as remarked in my ‘Lectures,’ whenever the parasites are taken in large numbers unpleasant symptoms soon show themselves in the infested person. There is, first of all, restlessness, loss of appetite, and more or less prostration. This is succeeded by rheumatoid pains in the limbs, with the frequent accompaniment of considerable swelling. The pain is not situated in the joints, but in the intermediate soft parts. In severe cases the limbs are drawn up and half bent, as in instances of severe and continued cramp. Sometimes the suffering is excruciating and unbearable, patients having been known to request the surgeon to put an end to their lives. In the worst forms of the malady death rapidly ensues from diarrhœa and exhaustion. If the parasites have gained admission to the muscles all hope of destroying them is at an end; but if a person suspects himself to have eaten diseased or trichinised meat he should lose no time in seeking professional assistance, seeing that the administration of suitable anthelmintics might be the means of saving his life, whereas a few days’ delay would probably prove fatal. So long as the worms remain in the stomach or intestinal canal they can be got rid of, but when once the trichinal brood have invaded the flesh then they cannot be expelled. As remarked in my ‘Entozoa,’ it is easy to perceive that although, in the majority of instances, Trichiniasis does not cause death, yet the percentage of fatal cases is by no means insignificant.

The notion that particular breeds of swine are more liable to be infested than others is absurd, since infection must be due to the facilities offered for swallowing garbage, especially dead rats. According to Drs Belfield and Atwood 8 per cent. of slaughtered American swine contain Trichinæ. In infested hogs they found from 35 to 13,000 parasites in a cubic inch of muscle, and by repeated feedings they succeeded in rearing about 100,000 Trichinæ in the body of a rat.

In regard to the disease in man let us glance at the phenomena that presented themselves in Plauen, a town of Central Saxony. Drs Böhler and Königsdörffer, who first saw this disease and treated it, state, according to Leuckart, that “the affection began with a sense of prostration, attended with extreme painfulness of the limbs, and, after these symptoms had lasted several days, an enormous swelling of the face very suddenly supervened. The pain occasioned by this swelling and the fever troubled the patients night and day. In serious cases the patients could not voluntarily extend their limbs, nor at any time without pain. They lay mostly with their arms and legs half bent—heavily, as it were, and almost motionless, like a log. Afterwards, in the more serious cases, during the second and third week, an extremely painful and general swelling of the body took place; yet, although the fifth part of all the patients were numbered amongst the serious cases, only one died.”

Satisfactory as it may be to note the numerous recoveries which take place, this circumstance is very much marred by the fact that a large proportion of the patients suffer the most excruciating agony. In the main it will be observed that Böhler’s and Königsdörffer’s experience, as recorded by Leuckart, corresponds very closely with that given by other observers. The symptoms, moreover, are very similar to those produced in the original case published by Zenker. In this case, which occurred in the Dresden Hospital (1860), the patient was a servant girl, aged twenty, and the principal symptoms were loss of appetite, prostration, violent pains, contraction of the limbs, and finally œdema, which, in association, perhaps, with a certain amount of pneumonia, terminated her career within a period of thirty days. The post-mortem appearances showed that the larval Trichinæ were the cause of death. The intestinal canal contained numerous sexually-mature worms.

The effects produced by Trichinæ on animals are similar to those occasioned in man. The phenomena were summarised by Davaine (in the journals quoted below) in 1863 as follows:

“The first phase is characterised by intestinal disorder, produced by the development of the larvæ in large numbers, and their adhesion to the mucous membrane of the intestine. In this stage M. Davaine has seen rabbits die with intense diarrhœa; one of two cats which he fed with trichinised meat had diarrhœa for at least a fortnight, but survived. Of five or six rats fed on a similar diet, one only, which was pregnant, died of diarrhœa, after abortion, on the eighth day. According to M. Leuckart, the passage of the embryos of Trichinæ through the intestinal walls sometimes produces peritonitis. This intestinal phase often becomes blended with the next; it may be relieved by the expulsion of the worms by means of the diarrhœa, or may cease with the natural death of the worms.

“The second stage presents general symptoms—muscular pains, &c. These phenomena are dependent on the introduction of the Trichinæ into the muscles; they rapidly acquire their maximum intensity, and have not a long duration. The appearance and duration of this stage are in complete relation with the development and length of sojourn of the Trichinæ in the intestines; in fact, in this entozoon, oviposition is not slow and of long duration, as in many nematoid worms; the genital tube is rapidly formed, and the ova, in its whole length, are developed almost simultaneously, so that the embryos, arriving soon at maturity, are at once thrown out in large numbers into the intestine, and the mother Trichina dies exhausted. If it be remembered that the embryos do not escape before the eighth day, that a certain number of days are required for their arrival in the muscles, and that new ones are not produced after six or seven weeks, it will be understood that the first symptoms of this stage can scarcely appear until the end of a fortnight after ingestion of the diseased food, that they must continue four or five weeks, and that after this they may disappear. This course of events is observed in animals; and in man the symptoms of this stage have shown themselves and become aggravated from the third to the sixth week after infection. Most animals die during this stage; rabbits rarely survive; rats, on the contrary, generally resist it.

“If the animals do not die of the general symptoms or local disturbances proper to these two stages, the inflammatory symptoms cease, respiration becomes natural, and order is re-established. But, in some cases, the number of cysts formed in the muscles are sufficiently great to impede them in the proper exercise of their functions, and hence arises general debility, a kind of consumption which persists or becomes aggravated, and the animal dies of marasmus. M. Davaine has noticed this in rabbits, but especially in a rat.

“Recovery from these phases of trichinal infection may be apparently perfect. A rabbit which M. Davaine kept during five months became large and fat, although it had a large number of Trichinæ in its muscles; a rat which had had these entozoa in considerable numbers during six months was, to all appearance, in good health. Hence he concludes that the Trichinæ produce symptoms only when they are in the intestinal canal, and when they are entering the muscles. Having become lodged in their cysts among the muscular fibres, they may remain harmless for an indefinite time. In every case except one, down to 1859, Trichinæ have been found in the bodies of persons who have died of disease (generally chronic) or by accident; or in the dissecting-room, in bodies regarding which the previous history could not be obtained. In most cases the cysts contained a cretaceous or fatty deposit, showing that they had probably existed several years.

“The observations which have been made on the human subject, in regard to the symptoms caused by Trichinæ, show that they belong, as in animals, to the initial period of infection. They consist in intestinal and in muscular lesions; the latter coincide with the entrance of the parasite into the muscles, and are truly traumatic. In Zenker’s case the intestinal symptoms were swelling and pain; in a case described by Friedreich diarrhœa was present. In all cases the most remarkable symptoms were violent rheumatoid pains in the muscles, not in the joints, which were considerably aggravated by attempts to extend the half-bent limbs. The other symptoms have been variable, but have had a strong resemblance to those of typhoid fever. In several cases there has been abundant sweating; and in one there was a very remarkable miliary and furuncular eruption. The animal heat was diminished in Friedreich’s case; and in those observed in Voigtland by Freytag the temperature never exceeded 102° Fahr.

“The progress, duration, and severity of the disease in man are in relation to the number of Trichinæ taken into the digestive canal. Of sixteen patients observed at Plauen by Drs Böhler and Königsdörffer, eight, who were moderately affected, recovered in a month; four, more severely diseased, were ill two months; of four others, one died with ascites and colliquative diarrhœa at the end of two months, and three recovered slowly at the end of three or four months. Recovery does not imply the death of the Trichinæ, it follows their enclosure in cysts.

“The diagnosis of trichinal infection has several times been made in the living human subject by removing a portion of muscle. M. Davaine thinks it probable that, during the first six or eight weeks of the disease, the diagnosis may be confirmed by searching for adult Trichinæ in the alvine evacuations, produced naturally or by means of a purgative.

“The prophylactic treatment consists simply in the avoidance of uncooked meat. The medicinal treatment must vary with the stage of the disease. At first, attempts must be made to expel the parasites from the intestines by purgatives and anthelmintics. Which amongst the latter is the most energetic is not yet determined. Calomel is, perhaps, M. Davaine thinks, the best. After six or eight weeks all treatment directed towards the intestines is superfluous. It is scarcely probable that any substance will act on the larvæ disseminated through the muscles. Friedreich has recommended picronitrate of potash; but, in the case in which he used it, live Trichinæ were found in the muscular tissue after the patient was considered to be cured.”

In regard to the possibility of curing trichiniasis by the administration of drugs which should act as trichinacides upon the parasites in the condition of flesh-worms, the absurdity of the proposal only equals that which was made in reference to the destruction of hydatids by the administration of kamala. As has been shown in the record of my first experiment the flesh of a trichinised corpse may be thoroughly saturated with a strong solution of chloride of zinc, and yet the worms will remain quite unaffected.

In reference to the dangers arising from the consumption of diseased meat, Professor Gamgee has very cogently put two questions:—“Did Moses know more about pigs than we do?” “Was it a knowledge of the parasitic diseases of swine and man that led Moses to condemn pork as human food?” Mr Gamgee answered both questions negatively, thus:—“The wisdom of the Mosaic law can only be justly estimated with a knowledge of the accidents arising in warm countries from eating pork throughout long and hot periods of the year; and there is no doubt that the direct evil results, as manifested by human sickness, led to the exclusion of pork from the list of Israelitish viands. The masses of measly pork which may be seen hanging from the butchers’ stalls in Southern Europe prove that the long-legged swine which hunt the forests for acorns, and rove about to pick up all kinds of offal, are often unfit for human food, and that they were so to no less extent in the land of Israel is probable.” As supplementing Professor Gamgee’s argument, I may remark that, if Moses had been furnished with special knowledge beyond that of his contemporaries, he would not, in the matter of meat-parasitism, have confined his restrictions to pork. Had he possessed any knowledge of measly beef, he would not have spared the ox on the ground that although “it divideth the hoof, yet it cheweth the cud.” As regards home-reared animals, Professor Gamgee cogently remarked: “It is interesting to observe that parasitic maladies in the pig specially abound in that section of the United Kingdom where swine live most amongst human beings. The Yorkshire and Berkshire pigs, in their native counties enclosed in the farmyards of their breeders, are free from worms which are likely to live in the body of man. The Irish pig is the one most commonly injured by entozoa, and the reason for this is evident when we know how much the cottager relies on rearing a porker which is permitted the free range of house and road, where every description of filth is devoured, charged with the ova of parasites expelled by man or some of the lower animals.” He also adds: “The conditions under which we live in the British isles are certainly much less favorable to the propagation of worms; but we disregard, in our ignorance, the most common precautions to protect ourselves from loathsome diseases, and not only permit dogs to eat any kind of offal in and around slaughterhouses, but sanction the existence of piggeries where all kinds of garbage, charged with worms or their eggs, are daily devoured by swine. The majority of germs calculated to engender parasites are to be found in abundance in the contents of the alimentary canal of human beings and domestic quadrupeds. If pigs are permitted to eat these, as in Ireland or in many British piggeries, we must expect hams, bacon, and pork sausages to be charged with the embryonic forms of human entozoa. Whereas in Iceland the dog is the victim of human negligence, and en revanche the cause of human disease, in the British isles the pig holds this unenviable position. We have good reason to believe, with Moses, that the pig is an unclean beast; but without discarding him from the scanty list of animals to be eaten, it is evident that we can purify the race of swine, and thus prevent human as well as porcine maladies.”

On the authority of Rupprecht, as quoted by Davaine, I append a list of the principal epidemics observed in Germany during the first six years immediately following the discovery of trichinosis:

1. Two slight epidemics in 1860 in the Island of Rügen; 10 to 20 patients (Dr Landois).

2. An epidemic at Stolberg, 1860 (Dr Fricinus). The number of trichinised persons was not stated with certainty.

3. Five epidemics during five summers, 1858 to 1862, at Magdebourg. The number of patients was 300, two only died (Dr Sendler).

4. An epidemic at Plauen in 1862, 20 patients (Böhler).

5. Gusten, 1861, 40 cases, all cured (Fränkel).

6. Epidemic in the Province of Armsted (Mansfeld), 1861, 8 patients.

7. Hettstädt, January and March, 1862, 8 to 10 patients.

8. Blankenburg, 1862, 278 cases, 2 deaths.

9. Calbe (Prussia), 1862, 38 cases (9 men, 25 women, 4 children), 8 deaths (Dr Simon and Dr Herbst).

10. Burg, in Magdebourg, 1863, 50 patients, 10 deaths (Dr Klusemann).

11. Quedlinburg, 1863, 9 patients, 1 death (Dr Behrens).

12. Plauen, 1863, 21 patients (Königsdörffer).

13. Falkenstein, 1863, 4 patients (Drs Bascher and Pinter).

14. Posen, August and September, 1863, 37 patients (Dr Samter).

15. Hamburg, 1863, 2 patients (Dr Tüngel).

16. Blankenburg, 1863, 32 patients, 2 deaths; new cases in 1864 (Dr Scholz).

17. Hettstädt (Prussian-Saxony), October, 1863, 158 patients, 27 deaths (Rupprecht).

18. Eisleben, December, 1863, and January, 1864, 18 cases, no deaths. This result was attributed to the employment of phosphoric acid (Rupprecht).

19. Hettstädt, February and March, 1864, 8 patients, no deaths. Two cats were also attacked, one of which died. Nearly 50,000 Trichina were counted in an infected leg of pork (Rupprecht).

20. Quedlinburg, 1864, 120 patients, 2 deaths; benzine was employed (Dr Wolf).

21. Hettstädt, January, 1865, 15 patients (Rupprecht).

22. Berlin, 1864, 3 cases (Dr Cronfeld). Several butcher boys (Frischer).

23. Leipzig, 1864, 14 patients, 2 deaths; 4 were infested after having eaten raw beef hashed on a block which had previously received the flesh of a trichinised hog (Dr E. Wagner).

24. Potsdam, 1864, 5 slight cases (Dr Mollendorf).

25. Celle (Hanover), 1864, 8 patients (Dr Scheller and Dr Baring); Trichina proven in the pork by Gerlach. In 1855, 12 Trichina (?) patients were treated by Schuchart.

26. Hedersleben, 25th October, 1865, a pig was killed and sold; on the 28th the malady appeared amongst the workmen; 350 patients, 100 deaths. Of 100 children infected, none died. Trichina found in the autopsies (Dr F. Kratz).

Dr Davaine also adds the following outbreaks:

In Massachusetts, 1867, 6 patients from having eaten raw ham, 1 death (‘Medical Times,’ 20th April, 1867, p. 431).

Ravecchia (Bellinzona), 1868, 5 patients, 4 deaths (Dr Zangger in Landbote of Winterthur).

Up to a comparatively recent date no case of trichinosis had been recognised in England during the life of the victim. As regards diagnosis, what was happening every day on the Continent was utterly unknown here. Whilst, however, not a single instance of Trichina-disease had been observed by British physicians in actual practice, as many as thirty or forty instances had occurred where the parasites in question had been found post mortem. I had myself examined the trichinised flesh taken from a dozen of these corpses, but in no instance had the faintest suspicion of trichinosis been entertained during life. The circumstances attending the only outbreak of trichiniasis that has been witnessed in England are very interesting. In the month of April, 1871, I received from Dr W. L. Dickinson, of Workington, Cumberland, specimens of pork which he requested me to examine; and in complying with his request I confirmed his opinion that the diseased meat was infested with Trichinæ. A few days afterwards I announced the discovery in the pages of the ‘British Medical Journal’ for April 22, p. 435. It happened, also, that at the time I was delivering a course of lectures before the Society of Arts; consequently, in my second discourse (which was devoted to the parasites of cattle) I gave full details of the facts that were obtained. Taking a small portion of the flesh which I judged to be affected to an average extent I addressed the audience as follows:

“If you calculate from one portion only, you might, if you had stumbled upon a part which was more infested with parasites than another, be led to over-estimate the degree of trichinisation. Taking proper precautions I have calculated that one scruple of this trichinous flesh would give us 4320 parasites, and two scruples would therefore yield 8640. Without speaking so precisely to numbers, I do not hesitate to aver my belief that there are at least 5000 of these parasites inside this small piece of ham. The number is probably close upon 8640. In one drachm that would give us 12,000, and in an ounce 103,000, according to the old apothecaries’ weight. If, however, we calculate according to the ordinary weight used by butchers, we should say that one ounce contains 4371/2 grains of meat, and therefore the number of parasites in one ounce would be 85,000. Thus, in one ounce of meat from this particular pig you have 85,000 Trichinæ, calculated at the rate of 200 in the grain, for I have purposely cut off the odd numbers. You may say, if a person can survive 18, 20, 30, or 40 millions, he would not take much harm from eating a piece of flesh containing only 8640 parasites. Such a portion, however, would be quite sufficient to make any one of us extremely uncomfortable were we to eat it, for supposing its contained parasites to be alive, it might prove dangerous to life. Why? The explanation is this:—Half of those 85,000 parasites, at the very least, will, in forty-eight hours after ingestion, have become fully-developed females; and from each of these 42,000 there will proceed at least 1000 as a brood, so that the entire progeny (and it is they that do the mischief by their independent migrations through our tissues) will eventually yield about 42,000,000 entozoa. If we should be so voracious as to eat a pound of such trichinised flesh, then there would be 400,000,000 as the result of a single meal.

“Having detailed these facts and inferences, I now wish to bring to your notice some other particulars connected with the Cumberland outbreak.

“Dr Dickinson, of Workington, tells me that he was at first suspicious that his patients were suffering from fever, but was not quite able to make out what the disorder was. At length certain symptoms occurred, which suggested that it might possibly be the German flesh-worm epidemic making its appearance in this country for the first time, and, therefore, in view of verifying the facts of the case, he sent me portions of the flesh of the pig. He describes the symptoms, which in their character corresponded with those previously recorded as experienced by persons similarly attacked. Dr Dickinson remarks, towards the close of his communication, that the victims form a small family who have carefully reared their own swine. The British farmer is thus here introduced to us at his own table playing the part of ‘host’—at her own table, I should say, for, to be more precise, it is a widow, her daughter, and a man-servant who are suffering. Dr Dickinson informs me that for two or three weeks before he was called to see them they had been eating sausages and boiled pork from one of their own home-fed pigs, which pig, by the way, turns out to have been an old sow. He brought away some sections of the leaner portions of the flesh for microscopic examination. You will observe that there can be no mistake about the source of the food on this occasion. Hitherto, Trichina has not been observed in our British-fed swine in more than one or two, or possibly three instances. Therefore it would be very interesting to ascertain how it happened that this poor pig became trichinised. In my communication addressed to the ‘British Medical Journal,’ I wrote as follows:—“Dr Dickinson has at the present time under his care a family suffering from the so-called flesh-worm disease, resulting from the consumption of ham prepared from pigs reared by the family themselves. A portion of ham sent to me swarmed with recently encapsuled Trichinæ. Dr Dickinson being thus the first person who has diagnosed trichiniasis in the living subject in England, I hope he may be induced to give us further particulars.” The editor, in commenting upon this letter, added a practical point, which I wish especially to bring to your notice. He says:—‘The subject of parasitic diseases of domestic animals is one of widespread and increasing interest. It is immediately related to the irrigation of fields with sewage.’ The editor, of course, made this statement on independent grounds, and on his own responsibility. If he had said the subject bears an indirect relation to the sewage question, he would have said no more than is absolutely true, for, as I shall take occasion to explain, there is every reason to suppose that certain forms of parasitic disease may be propagated by means of sewage. In this connection some of you may be disposed to ask the question:—‘Are there any sources of comfort to be gathered from the facts?’ Or you may say, supposing that in future our British swine are not as free from Trichinæ as they have been hitherto, can we possibly avoid the contingency of playing the part of host to those creatures? Certainly, I reply, it is simply a question of properly cooking the food. If these farmers have not cooked their food at all, or scarcely at all, that will at once account for their being laid up. I should tell you that the lady and the daughter are recovering, and that they are convalescent, but the man-servant is very ill. If, during cooking, the flesh consumed by these persons had been raised to a persistent temperature of 170° Fahr., then, doubtless, the ingestion of trichinised pork would have done no harm. You observe that Dr Dickinson says in his letter that they partook of it roasted and boiled. Now, few of us are in the habit of eating underdone pork, although there are other meats that we devour very readily in an imperfectly cooked state. It must be remembered, also, that although the exterior may have been subjected to a temperature of 212 degrees, it by no means follows that the whole of the joint throughout must have been submitted to that temperature. Under rapid cooking, the centre of a large joint may remain much below even 140 degrees. If the man-servant ate only one ounce of the flesh with living Trichinæ in it, he will probably have at this present moment at least 42,000,000 of these guests in his muscles. You will ask, ‘Will he recover?’ ‘Yes; if he ate no more than that.’ If he has eaten 2 oz. thoroughly underdone, depend upon it he has 80,000,000, and if he has eaten 3 oz. he will have over 100,000,000 of Trichinæ in his muscles. Could he survive if he had eaten over 3 oz., and thus have 100,000,000 and upwards of these inhabitants? I think he could. We have evidence on this point from the case in which I estimated that there were upwards of 100,000,000 of Trichinæ present, and yet the man survived the attack.

“Incidentally I may remark that in the course of the last twenty years, although millions of parasites and their eggs have passed through my hands, I have almost entirely escaped infection. It is something to know what you are either handling or looking at, because there are many parasites besides Trichina which are dangerous. There are gregariniform entozoa residing in meat which we eat every day without any bad consequences. They are as harmless as cheese-mites. There is no need to be in the slightest degree nervous about flesh-food, provided it is properly cooked. I believe there will be no fatal issue in the case of any of the three individuals just alluded to, but the chief practical point before us arises out of the fact that we have here, for the first time in England, an epidemic of trichiniasis. By calling attention to the subject, it will, to say the least, suggest precautions by which future epidemics may be avoided.”

The above remarks form the substance of a lecture given on the 24th of April, 1871. A week later I delivered the third of the Cantor lectures for that year, when I took occasion to add the following particulars:

“It has been asked whether the so-called muscle-Trichinæ, after they have arrived at their destination within the flesh of man, are capable of producing any more unfavorable consequences? The answer is, Certainly not. In the case of man it would be necessary that his muscles should be eaten in order for the Trichinæ to become sexually-mature worms; and in those countries where cannibalism exists, the man-eater would himself become trichinised, and would certainly deserve his fate. I was very desirous to follow up the account of this outbreak by inquiries respecting the particular animal which had been the cause of the outbreak. I may therefore mention that my informant, Dr Dickinson, states that the family, including the man-servant, all fed together, and that they had for upwards of a fortnight eaten daily, and sometimes twice a day, sausages made from the flesh of the trichinised animal. And he adds: The meat cut from the ham and flitches, and what is called the spare-rib, was roasted before the fire or in the frying-pan. Occasionally it was cooked in the oven. Dr Dickinson ascertained from the mother that she liked her meat to be underdone, and thus, therefore, there is very little doubt that the meat was generally undercooked. The man, a strong labourer, had a good appetite, and would therefore get a large share. He is improving slowly. Dr Dickinson adds in a postscript, what is still more to the point, that the sausages would be most likely undercooked; they would be cooked in the frying-pan, and if only brown on the outside would be eaten. It is probable that the outbreak was due therefore to eating underdone meat from this pig, cooked in various ways, and not alone from the ham itself.”

If the facts connected with this outbreak be honestly faced, it must be rendered clear to any unprejudiced observer that Dr W. Lindow Dickinson was the first person to observe, recognise, and treat the Trichina disorder in this country. No other English, Scotch, or Irish physician has encountered any similar case. If I lay stress upon this fact it is because I have learned from Dr Dickinson that another person has asserted priority in this relation. Sir Dominic Corrigan is stated to have told a gentleman in the House of Commons, “that he had often met with trichiniasis in his practice in Dublin,” further averring that the disease “was quite common in many parts of Ireland.” If Sir D. Corrigan merely desired it to be understood that he had repeatedly encountered the Trichina at post-mortem examinations, then there is nothing surprising in his statement, but if, on the other hand, the disease itself has been frequently recognised in the living Irish human subject, one can only express astonishment that hitherto no single instance of the kind appears to have been recorded either in the public or professional journals.

Bibliography (No. 21).—English Literature.Allman, G. J., “Exhib. of Specimens,” ‘Micr. Jrn. and Structural Record,’ 1842, p. 94.—Althaus, J., ‘Essay on Trichinosis,’ London, 1864.—Idem, “On a Suspected Case,” ‘Med. Times and Gaz.,’ 1864, p. 161; see also pp. 362 and 390.—Atwood, see Belfield.—Ballard, E., “On Diseased Meat,” ‘Med. Times and Gaz.,’ 1864.—Belfield (with Atwood), “Trichinæ in Pork;” ‘New York Med. Rec.,’ Dec. 28, 1878; ‘Med. Times and Gaz.,’ Feb. 15, and ‘Lancet,’ Feb. 22, 1879.—Bellingham, O. B., ‘Dublin Med. Press,’ 1852.—Bowditch, H. J., “Cases of Trichina,” ‘Boston Med. and Surg. Journ.,’ 1842–43–44.—Bristowe, J. S. (and Rainey), ‘Trans. Path. Soc.,’ 1854.—Chevers, N., “Sanitary Efforts in regard to Trichiniasis,” ‘Lancet,’ 1864, vol. ii, p. 733.—Cobbold, T. S., “On the Discovery of Trichina, in relation to the question of Priority,” ‘Lancet’ for March 3, 1866, p. 244.—Idem, ‘Parasites, and the part they play in the Economy of Nature’ (lecture), Manchester, 1873, p. 46; also in the ‘Veterinarian,’ March, 1874.—Idem, Remarks in the ‘Journ. Soc. of Arts,’ 1866, p. 399; also in ‘Med. Times. and Gaz.,’ 1867, p. 24; also in ‘Lancet,’ Feb., 1864 and 1866, p. 538.—Idem, ‘Our Food-producing Ruminants and the Parasites which reside in them’ (Cantor Lectures), 1871.—Idem, “Experiments with Trichina,” ‘Proceed. Linn. Soc.,’ vol. ix, p. 205, 1867; see ‘Lancet’ for Jan. 13, 1866, p. 52; ‘Brit. Med. Journ.’ for Dec. 22, 1866, p. 713; also ‘Lancet’ for Jan. 9, 1867, p. 91.—Idem, “Worms” (l. c., Bibliog. No. 2, Lecture xviii), 1872.—Idem, “Outbreak of Trichinosis in England,” ‘Brit. Med. Journ.,’ 1871, p. 435.—Idem, “Trichinæ in Fish” (alleged to have been found in a pike by Dr Elendenen at Ostend), in the ‘Lancet’ (anonymous annotation) for Nov. 16, 1878.—Curling, T. B., two cases, ‘Lond. Med. Gaz.,’ 1836.—Davaine, C., quoted in ‘Brit. Med. Journ.,’ see foreign lit., below.—Delpech, abstr. of his Report, ‘Brit. Med. Journ.,’ 1866, p. 375.—Dickinson, W. L., ‘Brit. Med. Journ.,’ 1871.—Elendenen, “Trichinæ in Fish” (newspaper report respecting his “find”); see Cobbold, above.—Farre, A., “Observations,” ‘Lond. Med. Gaz.,’ 1835–36.—Friedreich, N. (trans. by Ogle), ‘Med.-Chir. Rev.,’ 1863, repr. in ‘Edin. Vet. Rev.,’ 1863.—Furstenburg, ‘Edin. Vet. Rev.,’ 1864, p. 513.—Gordon (see Chevers).—Gamgee, J., “On Diseased Meat,” ‘Pop. Sci. Rev.,’ 1864.—Goodsir, J., ‘Month. Journ. Med. Sci.,’ 1842.—Harr, ‘Bost. Med. and Surg. Journ.,’ 1866, p. 532.—Harrison, “On a peculiar Species of Entozoon occasionally found in the Voluntary Muscles of the Human Subject,” ‘Rep. of Brit. Assoc.,’ Aug. 12, 1835; in ‘Dub. Journ.,’ vol. viii, 1835–36; in ‘Lond. and Edin. Phil. Mag.,’ and in ‘Amer. Journ. Med. Sci.,’ vol. xviii, p. 187, 1836.—Herbst, “Trichinæ in the Badger,” ‘Assoc. Med. Journ.,’ 1853, p. 491.—Hilton, J., “Notes on a peculiar appearance observed in Human Muscle, probably depending upon the formation of very small Cysticerci,” ‘Lond. Med. Gaz.,’ vol. xi, p. 605, 1833.—Jackson, J. D., “Trichiniasis,” in ‘Hay’s Amer. Journ.,’ 1867, p. 82.—Kiefer, H., cases, ‘Bost. Med. and Surg. Journ.,’ 1866, p. 208.—Kobelt, ‘Micr. Journ. and Struct. Rec.,’ 1842, p. 147.—Kratz, “On the Hedersleben Epidemic,” ‘Brit. Med. Journ.,’ 1866, p. 76.—Krombein, “Trichiniasis in New York,” ‘Amer. Journ. Med. Sci.,’ 1864, and ‘Med. Times and Gaz.,’ 1864, p. 292.—Küchenmeister, F., Symptoms, &c., ‘Lond. Med. Rev.,’ 1860, p. 457.—Langenbeck, case, ‘Edin. Vet. Rev.,’ Feb., 1864.—Leidy, J., “Trichina in the Pig,” ‘Annals of Nat. Hist.,’ and ‘Pr. Ac. N. S. Philad.,’ 1847.—Leuckart, R. (translations from), in ‘Ann. Nat. Hist.,’ 1860; in ‘Qrt. Journ. Micr. Sci.,’ 1860; and in ‘Bost. Med. and Surg. Journ.,’ vol. liii, p. 198, 1860–61.—Liveing, R., “Path. Soc. Rep.” in ‘Med. Times and Gaz.,’ 1865, p. 374.—Mosler, “On Trichinous Flesh,” ‘Brit. Med. Journ.,’ 1864, p. 554.—Idem, “On Benzine in Trichinosis,” ‘Med. Times and Gaz.,’ Oct., 1864, p. 444.—Nunneley, T., ‘Brit. Med. Journ.,’ 1866, p. 252.—Owen, R., “Description of a Microscopic Entozoon infesting the Muscles of the Human Body,” ‘Proc. Zool. Soc.,’ and ‘Lond. Med. Gaz.,’ 1835; ‘Trans. Zool. Soc.,’ vol. i, 1835.—Idem, Remarks in ‘Journ. Soc. of Arts,’ 1866, p. 399.—Paget, J., “Letter relating to the Discovery of Trichina,” ‘Lancet,’ March, 1866, p. 269.—Rorie, J., Letter, ‘Lancet,’ Feb., 1864.—Salisbury, J. H., On a supposed Species of Trichina (T. cystica) from the Human Bladder; in his paper on “Parasitic Forms,” in ‘Hay’s Amer. Journ. Med. Sci.,’ 1868, p. 376.—Sanders, R., ‘Edin. Month. Journ.,’ 1853.—Sawer, A., ‘Bost. Med. and Surg. Journ.,’ 1865, p. 16.—Sutton, G., Report on Trichinosis; Indiana, U.S., 1874.—Thudichum, J. W. S., ‘Brit. Med. Journ.,’ Jan., 1864, repr. in ‘Glasgow Med. Journ.,’ April, 1864, p. 116; also letter in ‘Edin. Med. Journ.,’ Feb., 1864.—Idem, “Rep. on the Parasitic Diseases of Quadrupeds used as Food,” pub. by the Med. Officer of the Privy Council, London, 1865.—Idem, “The Diseases of Meat as affecting the Health of the People,” ‘Journ. Soc. of Arts,’ April 20, 1866.—Idem, “German Sausages and the Trichina Disease,” ‘Scientific Opinion’ for April 25, 1866.—Idem, ‘Lancet’ for Jan. 6, 1866, p. 16.—Turner, W., “On the Trichina spiralis,” ‘Edin. Med. Journ.,’ Sept., 1860; in the ‘Year-Book,’ p. 109, for 1860; in ‘Med.-Chir. Rev.,’ 1862; and in ‘Bost. M. and S. Journ.,’ vol. lxiii, p. 294.—Ude, “Rep. on the Inspection of Pigs,” ‘Med. Times and Gaz.,’ Aug., 1868, p. 141.—Valentin, ‘Micr. Journ. and Struct. Rec.,’ 1842, p. 87.—Virchow, R., Extr. from his brochure on ‘Trichina’ (by myself), in ‘Gunther’s Record’ for 1864, p. 611.—Idem, “On the Cure of Trichinosis,” ‘Brit. Med. Journ.,’ April, 1866, p. 368.—Idem, from “Comptes Rendus,” in ‘Qrt. Journ. Micr. Sci.,’ 1861.—Idem, from his ‘Archiv,’ 1860, Bd. xviii, Heft. 4, p. 330; in ‘Brit. and For. Med.-Chir. Rev.,’ vol. xxvi, p. 515, 1860.—Wedl, Report, ‘Brit. Med. Journ.,’ Dec., 1866, p. 618.—Wilks, S., “Letter respecting the Discovery of Trichina,” ‘Lancet,’ March 10, 1866, p. 269; see also the ‘Times,’ Feb. 13, 1866.—Windsor, J., ‘Brit. Med. Journ.,’ March 4, 1866, p. 319.—Wood, H., case, ‘Lond. Med. Gaz.,’ 1835.

Foreign Literature:—Ardenghi, E., “Sulla Trichina spiralis,” ‘Lo Studente Veterinario,’ 1876, p. 115.—Behrens, “Ein Fall von Trichiniasis,” ‘Deutsche Klinik,’ No. 30, 1863 (quoted by Davaine).—Bette, F., ibid., 1876.—Bischoff, ‘Path. Anat. des menschl. Körp.,’ 1845.—Idem, ‘Med. Annalen,’ 1840.—Böhler, ‘Die Trichinenkrankheit in Planen,’ 1863.—Boudin, “Des épidémies de Trichina spiralis observées en Allemagne dans ces dernières années,” ‘Journ. de Méd. Vét. Milit.,’ August and September, 1864 (quoted by Davaine).—Claus, ‘Wurzb. nat. Zeitschr.,’ 1860.—Idem, ‘Ueber die Trichine’ (a discourse), 1877.—Colberg, ‘Deutsche Klinik,’ 1864.—Davaine, C., ‘Traité’ (l. c., Bibl. No. 1), 1860, p. 672, 2nd edit., p 732–768.—Idem, “Faits et Considerations sur la Trichine,” ‘Mémoires de la Société de Biologie’ for the year 1862, tom. iv, ser. 3, 1863; in ‘Gazette Médicale de Paris,’ 1863; in ‘British Medical Journal’ for April 25, 1863; and in my ‘Entozoa,’ p. 349.—Idem, “La Trichine” (popular exposition), in ‘Revue des Deux Mondes’ for May, 1865.—Dujardin (l. c., Bibl. No. 1), p. 24.—Fiedler, ‘Virchow’s Archiv,’ 1864.—Fleckles, F., ‘Die Trichinen und die Trichinenkrankheit’ (popular exposition), Prag., 1866 (quoted by Davaine).—Friedrich, N., ‘Virchow’s Archiv,’ 1862.—Fürstenberg, “Wochenblatt d. Ann. der Landwirthsch., in d. Königl. Preuss. Staaten,” 1865.—Gerlach, C., ‘Die Trichinen,’ 1866.—Idem, ‘Hannöversche Zeitschrift,’ 1864.—Hagen, in ‘Pharmaceutische Centralhalle,’ 1862.—Henle, ‘Muller’s Archiv,’ 1835, s. 526.—Herbst, ‘Nachrichten v. d. Georg-Aug. Univ. zu Göttingen,’ 1852; ‘L’Institut,’ 1852, p. 135.—Heschl, R. L., ‘Ueber Trichinen, die Trichinenkrankheit und die Schützmassregeln dagegen,’ Gratz, 1866 (quoted by Davaine).—Kestner, “Etude sur le Trichina,” ‘Gaz. Méd. de Paris,’ 1864.—Klusemann, “Die Erkrankung durch den Genuss von Nahrungsmittel aus dem Thierreiche,” ‘Deutsche Klinik,’ 1864.—Kobelt, ‘Valentin’s Repertorium,’ 1841.—Krabbe, “Husdyrenes Indvoldsorme,” ‘Tiddsskrift for Vet.,’ 1872.—Kratz, ‘Die Trichinenepidemie zu Hedersleben,’ 1866.—Küchenmeister, ‘Parasiten,’ 1855.—Leuckart, ‘Untersuchungen ueber Trichina spiralis,’ 1866.—Idem, ‘Die mensch. Par.,’ Bd. ii, s. 409.—Idem, “Die neuesten Entdeckungen ueber menschliche Eingeweidewürmer und deren Bedeutung für die Gesundheitspflege,” ‘Unsere Zeit.,’ 1862.—Lion, ‘Zur Geschichte, Therapie, Prophylaxis, und Sanitätspolizei der Trichinen’ (quoted by Pagenstecher).—Luschka, “Zur Naturgeschichte der Trichina spiralis,” ‘Zeitschr. für wissenschaftl. Zool.,’ 1851.—Meissner, ‘Zeitschr. f. rat. Med.,’ 1855.—Idem, “Ueber Trichinenkrankheit,” ‘Schmidt’s Jahrbücher,’ 1863.—Ordonez, E. L., ‘Note sur la Distinction des Sexes et le Développement de la Trichina spiralis des Muscles,’ Paris, 1863; and ‘Compt. Rend. Soc. Biologie,’ p. 61, 1863 (quoted by Davaine).—Pagenstecher, ‘Verhandl. d. Naturhist.-Med. Vereins zu Heidelberg,’ 1864.—Idem (und Fuchs), ‘Die Trichinen,’ 1865.—Perroncito, “La Trichina spiralis” in ‘Italia. Estr. degli Annali R. Accad. d’Agric. di Torino,’ vol. xx, 1877.—Reyher, O., ‘Die Trichinenkrankheit,’ Leipzig, 1862.—Rodet, H., ‘De la Trichine et de la Trichinose,’ Paris, 1865 (quoted by Davaine).—Rupprecht, B., ‘Die Trichinenkrankheit im Spiegel der Hettstedter Endemie betrachtet,’ Hettstedt, 1864.—Seidel, ‘Jenaische Zeitschr. f. Med. u. Nat.’ 1864.—Siebert, ‘Ueber die Trichinenkrankheit und ihre Vermeidung,’ Jena, 1863.—Siebold, art. “Parasiten,” ‘Wagner’s Handwörterbuch,’ 1844.—Simon, G., “Eine Trichinen-epidemic in Calbe,” ‘Preussische Medicinal Zeitung,’ 1862.—Tommasi, ‘La Trichina spiralis e la Malattia prodotta da esso,’ Torino, 1863.—Tüngel, ‘Archiv von Virchow,’ xxvii, 3, 421, 1863 (quoted by Davaine).—Virchow, ‘Deutsche Klinik,’ 1859; ‘Comptes Rendus de l’Acad. des Sci.,’ tom. xlix.—Idem, ‘Archiv f. Path. Anat. und Physiol.,’ Bd. xviii.—Idem, ‘Darstellung der Lehre von den Trichinen’ (fur Laien und Aerzte), 1864.—Vogel, ‘Die Trichinenkrankheit,’ 1864.—Wagner, “Eine Trichinenepidemie in Leipzig,” ‘Arch. der Heilkunde,’ 1864.—Wunderlich, C. A., “Sur la diagnose probable de l’affection trichinale,” ‘Gaz. Méd. de Paris,’ p. 311, 1863; from ‘Wagner’s Archiv der Heilkunde,’ ii, 3, p. 269, Leipzig, 1861 (quoted by Davaine).—Zenker, “Zur Lehre von der Trichinenkrankheit,” ‘Deutsches Archiv. für Klin. Med.,’ Bd. viii, s. 387.—Idem, ‘Virchow’s Archiv,’ 1855 and 1860.

Trichocephalus dispar, Rudolphi.—This well-known worm possesses a long filiform neck, occupying about two thirds of the entire length of the body. The surface of the skin though smooth to the naked eye is furnished on one side with a longitudinal band of minute wart-like papillæ. The tail of the male is curved, and emits at the extremity a short, tubular penis-sheath, armed with minute retroverted spines. The tail of the female is straight and bluntly pointed. The eggs measure 1/480″ to 1/447″ in their long diameter. The whipworm infests the cæcum, and also the upper part of the colon. Upwards of one thousand were found by Rudolphi in a woman.

The original name of Trichuris, given to this worm by Buttner, could not, of course, be allowed to stand when it became evident that the so-called tail was in reality the head and neck. The Trichocephalus is not uncommon in England and Ireland. It is less frequent in Scotland. On the continent, however, it is so abundant that M. Davaine calculates that not less than one half of the inhabitants of Paris are infested by it. From what Dujardin has said it can be scarcely less abundant in Northern France, for M. Duval, the distinguished director of the Rennes School of Medicine, supplied that helminthologist with numerous specimens on various occasions. The worm abounds in Italy and Egypt; being scarcely less prevalent in the United States. The lamented Mr Noel, one of my old pupils at the Middlesex Hospital College, brought me specimens which he found post-mortem on three or four occasions. Dr Haldane, of Edinburgh, once or twice obtained large numbers (post-mortem). In Ireland, Bellingham found the worm in eighty-one out of ninety post-mortem examinations. Mr Cooper, of Greenwich, met with it, post-mortem, in eleven out of sixteen instances. When treating patients for tapeworm I have repeatedly expelled the whipworm.

The organisation of Trichocephalus dispar has been investigated by Dujardin, Mayer, Von Siebold, Eberth, Bastian, and others. Prof. Erasmus Wilson and myself have carefully studied the anatomy of the closely-allied whipworm of ruminants (T. affinis) which is discussed in my ‘Entozoa.’

The statement of Küchenmeister that there are no external appendages in the female Trichocephalus comparable to those known to exist in the allied Trichosomata, is incorrect. Leuckart’s, and especially Virchow’s, researches disproved Küchenmeister’s and Meissner’s notion that Trichinæ were the young of Trichocephalus. The experiments of Davaine render it probable that the young get into the human body in a direct manner. He finds that the eggs undergo no development whilst yet lodged within the host’s intestines. The eggs are expelled per anum in the immature condition in which they first escape from the body of the parent worm. It further appears that, after their expulsion, a period of six months must elapse before embryonic formation commences. The fully-developed embryo measures 1/333″ in length, and resembles the parent to a certain extent.

Whipworms rarely put their bearers to inconvenience; nevertheless, both human and animal hosts occasionally suffer from their presence. Thus, Felix Pascal quotes a remarkable and fatal instance of cerebral symptoms from this cause in a girl of four years of age; and Mr Gibson has recorded an instance in which these worms produced paralysis and loss of speech. According to Professor Axe, sheep suffer severely from the allied species.

Bibliography (No. 22).—Bastian, H. C., “On the Anatomy of the Nematoids,” ‘Phil. Trans.,’ 1866, p. 545.—Bellingham, O. B., “On the frequency of Trichocephalus dispar in the Human Intestines,” ‘Rep. of Brit. Assoc., in Dubl. Journ.,’ 1838, and in ‘Med. Chir. Rev.,’ 1838; see also Bibliog. No. 33 (and the biography of Bellingham by Dr Mapother, in ‘Dubl. Jrn. Med. Sci.,’ 1877, p. 471).—Busk, G., “Anat. of T. dispar,” ‘Ann. Nat. Hist.,’ vol. vii, 1841.—Chiaje, sul Tricocephalo disparo, &c., 1836.—Cobbold, ‘Entozoa,’ pp. 69 and 329.—Idem, ‘Worms,’ pp. 31 and 67.—Davaine, l. c., p. 205.—Idem, ‘Compt. Rend.,’ 1858, p. 1217, and ‘Journ. de Physiol.,’ 1859, p. 296.—Dubini, ‘Entozoografia umana,’ p. 83.—Dujardin, l. c., p. 32.—Eberth, “Die Generationsorgane von T. dispar,” ‘Sieb. und Köll. Zeitschr.,’ 1860, s. 384.—Gibson, D., “On a Case of Paralysis, with loss of speech, from intestinal irritation (produced by T. dispar),” ‘Lancet,’ Aug. 9th, 1862, p. 139.—Goeze, ‘Naturg.,’ s. 112.—Gurlt, ‘Path. Anat.,’ p. 350.—Küchenmeister, l. c., s. 235; Eng. edit., p. 321.—Leidy, ‘Proc. Acad. Phil.,’ viii, p. 53.—Leuckart, l. c., s. 465.—Mayer, Sieb. und Köll. ‘Zeitsch. f. wiss. Zool.,’ Bd. ix, s. 367; Bd. x, s. 233, and s. 383, 1858–60.—Mérat, ‘Dict. Sc. Méd.,’ p. 560.—Von Siebold, ‘Wiegm. Arch.,’ 1845.—Wilson, E., ‘The Veterinary Record and Trans.,’ vol. ii, p. 47, 1846.

Filaria Bancrofti, Cobbold.—The history of the discovery of this entozoon is second only in interest to that of Trichina spiralis. Step by step the facts have been evolved by a slow process of observation, and from the data thus afforded a tolerably connected narrative of the probable life-cycle of this entozoon may now be offered. To place matters beyond all doubt much remains to be done; yet that which has been accomplished is, or ought to be, of surpassing interest alike to the physician, the scientific pathologist, the epidemiologist, and the philosophic naturalist. In the case of Trichina, Owen’s nomenclature was most properly allowed to stand; but for reasons stated below I have not hesitated to employ for this worm, in its adult state, a name differing from that originally given to the hæmatozoon which turns out to be its representative larval state. Although the male parasite is at present unknown, the following characters will in the meantime suffice for a diagnosis of the species:—Body capillary, smooth, uniform in thickness. Head with a simple circular mouth, destitute of papillæ. Neck narrow, about one third of the width of the body. Tail of female simple, bluntly pointed; reproductive outlet close to the head; anus immediately above the tip of the tail. Length of largest females, 31/2 in.; breadth, 1/90″; embryos, 1/200″ to 1/125″ in length, by 1/3000″ to 1/2250″ in breadth; eggs, averaging 1/1000″ by 1/1650″ from pole to pole.

The first discovery of this entozoon, in its embryo state, was made by Wucherer on the 4th of August, 1866. To use Dr Da Silva Lima’s words:—“At the moment when Wucherer was seeking for the Bilharzia hæmatobia, he found instead of it an unknown worm. Our illustrious collaborator,” adds Dr Lima, “has made his important discovery known under the modest title of ‘Preliminary Notice on a species of Worm at present not described;’ and still more modestly Wucherer formulated in the following manner his judicious and prudent conclusions:—It would be rash on my part to put forth a conjecture on the coexistence of these worms of the hæmatochyluria, and on the etiological signification which they might have. I shall therefore abstain until I have been able to make more ample investigations, and until I have been permitted to examine the corpse of a hæmaturic, which has not yet been possible.” (‘Gazeta Medica da Bahia,’ Dec., 1868, p. 99.)

In the year 1868 Dr J. H. Salisbury referred certain ova which he found in the urine to a new and distinct species of nematode. Although he had no acquaintance with the adult parasite, Dr Salisbury at once placed the “species” in the genus Trichina. Here is what he says:—“Trichina cystica (Salisbury).—This is a small species which I have found in the human bladder. In all my examinations I have met with this little entozoon in three cases only. In two of these it was only occasionally met with in the urine. In the other it occurred in great numbers. Frequently from ten to fifteen ova were found in a single drop of urine.”

It is important to remark, that there was no hæmaturia in the last-named case, which Dr Salisbury describes as one of “cystinic rheumatism,” or “severe cystinæmia associated with rheumatism and paralysis.” The patient “had been insane for several years. Her urine was passed milky, with granular cystine, and was dense and scanty.” It is likewise added: “No examination was made of the muscles after death to determine whether this species burrowed in the tissue, like the (Trichina) spiralis.”

So much for the principal facts recorded by Dr Salisbury. His paper is accompanied by two woodcut figures of the ova (× 300 diam.), and one representation of the embryo (× 1000 diam.). If these figures give the size correctly, the ova measure only about 1/800″ in length, by 1/1560″ in breadth, whilst the embryo would be about 1/500″ from head to tail.

Fig. 38.—Group of eggs and embryos in a case of endemic hæmaturia (1870). Original.

On the 17th of May, 1872, I communicated to the Metropolitan Counties Branch of the British Medical Association a paper on ‘Bilharzia,’ and in an Appendix to it I wrote as follows:—“A most interesting circumstance connected with this case of ‘Bilharzia’ from Natal lies in the fact that I obtained from the patient some other urinary parasites in the egg-condition (fig. 38). On five separate occasions I obtained one or more specimens of the eggs or embryos of a minute nematode. In one instance there were about fifty of these ova in the urine, their contained embryos being well developed and in a state of activity. Usually they were all in this advanced condition; but on the 25th of July, 1870, several were observed in much earlier stages of development. One of these was of a triangular form; its shape, granular contents, and clearly defined limiting membrane, indicating separation from the rachis within the ovarian tube. Another early form was perfectly spherical, with a well marked chorional envelope and double contour. These forms measured about 1/750″ in diameter. The fully grown eggs observed at the same time gave a longitudinal measurement of 1/500″ by 1/1000″ in breadth. On adding any stimulus, such as diluted sulphuric acid, the embryos moved themselves freely within the egg. After allowing the urine to stand for forty-eight hours, I found, on the 27th of July, that the shells of the ripe ova had dissolved, leaving the embryos dead, but still coiled within a fine transparent envelope. In this state they were easily separated and examined, when they gave a measurement of 1/300″ in length, by 1/3500″ in breadth. On two occasions, whilst engaged in rearing the larvæ of Bilharzia in water, I noticed single specimens of these embryos lying dead; and one of the examples thus observed gave a length of 1/150″, by 1/3000″ in breadth.”

Knowing what errors of interpretation have often crept into helminthological literature I was more than usually cautious in pronouncing upon the source of these urinary parasites. Accordingly, I remarked that “future discoveries might enable us to identify the species of nematode to which these ova are referable.” I also added:—“Notwithstanding discrepancies as to size, I am inclined to think that Dr Salisbury and myself have been made acquainted with nematode eggs and embryos referable to one and the same species of parasite. I do not care to speculate as to the origin of these ova. Long ago I gave in my adhesion to the determinations of Schneider in respect of the so-called Spiroptera hominis, but I am by no means certain that his position may not be disturbed by fresh discoveries. It is not a little remarkable that the parents of my patient should have averred that she passed three small vermiform entozoa by the urethra, corresponding, to judge from their verbal statements, very closely with the ordinary appearances of Filaria piscium.”

Having written thus much seven years back, it is with natural pleasure that I find my anticipations already verified. Knowing that I was dealing with parasites in their earliest larval stages, it never occurred to me to give a specific name to them, and I could not possibly approve of Dr Salisbury’s nomenclature, for which there was no good ground.

In the original discovery Dr O. Wucherer procured the worms from the chylous urine of a female in the Misericordia Hospital at Bahia; and on the 9th of the following October, 1866, he obtained similar worms from another female suffering from hæmaturia. He also afterwards found them in a man whose urine was slightly chylous, but not hæmatic. In all cases these sexually-immature nematodes were alive. In September, 1872, Dr A. Corre furnished a careful description of similar worms found by Dr Crévaux in a hæmato-chylurous patient at Guadeloupe. Dr Crévaux frequently examined the blood of this patient but found no hæmatozoa. In like manner in Brazil, Dr J. Silva Lima sought in vain for worms in the blood of no less than five patients, all of whom suffered from hæmaturia, and whose urine contained numerous nematoid worms.

Towards the close of the year 1872 the biological world was startled by the announcement of the discovery of minute Filariæ in human blood. Dr T. R. Lewis had found microscopic worms in the blood, and also in the urine, of persons suffering from chyluria. The worms could be obtained from day to day by simply pricking any portion of the body with a finely pointed needle. To this hæmatozoon Lewis gave the trinomial term Filaria sanguinis hominis, which thus fitly distinguished it from the Filaria papillosa hæmatica canis domestici described by Grube and Delafond. Dr Lewis found the average size of the parasite to be 1/75″ in length by 1/3500″ in breadth. He observed that while it exists in the blood the body is enclosed in a delicate transparent tunic or cyst. The worm was never absent from urine in chyluria. In a case in which there was a milky discharge from the eyes the worms were also detected. In one case Lewis calculated that 140,000 Filariæ were present in the blood—a number certainly not relatively large seeing that MM. Grube and Delafond estimated the verminiferous blood of their several dogs to contain numbers varying from 11,000 to 224,000. Lewis also found Filariæ in the kidneys and supra-renal capsules of a woman who died of chyluria. It did not appear probable that the worms underwent further development in the human body. On this point Lewis remarks:—“Not only may those hæmatozoa found in man live for a period of more than three years, but there is no evidence that they have any tendency to develop beyond a certain stage as long as they remain in the circulation.” Dr Lewis judged that the form of chyluria associated with this condition of the blood was local and intimately related with a tropical climate. The milky condition of the urine comes on suddenly, not only at first, but on succeeding occasions also. It is frequently accompanied by more or less distinctly marked symptoms of various other obscure diseases, including temporary swellings in the face or extremities. From certain appearances of intestinal ulceration Lewis thought that the parasites might gain access to the system by the alimentary canal, possibly from the tank-water or the fish inhabiting it. He considered the state of the urine to be due to the mechanical interruption offered to the flow of the nutritive fluids of the body. The accidental aggregation of the Hæmatozoa might give rise to obstruction of the currents within the various channels, or occasion rupture of their extremely delicate walls, and thus cause the contents of the lacteals, lymphatics, or capillaries, to escape into the most conveniently placed excretory channel.

Compressed into a small compass, I think the above is a fair statement of the leading facts and phenomena discovered by Lewis. The whole subject of hæmatozoology immediately received additional impulse, the consequences of which have not yet terminated. In this country Welch was stimulated to investigate the structure of Filaria immitis in the dog, whilst others sought diligently for nematoid hæmatozoa abroad.

On the 20th of April, 1874, Dr Prospero Sonsino communicated to the Neapolitan Royal Academy his memoir entitled “Researches concerning Bilharzia hæmatobia in relation to the endemic hæmaturia of Egypt, with a notice concerning a nematoid found in the human blood.” In this brochure he made known the fact of his having discovered microscopic Filariæ in a young Egyptian Jew, in the following words:—“On the 1st of February last, having well washed the finger of the boy, I placed one drop of blood under the microscope, when with astonishment I discovered a living organism of the form of a nematode, resembling Anguillula, in the midst of the hæmatic corpuscles. The worms glided amongst the globules, which were tossed about by their lively movements, showing various appearances according as they presented themselves either from the sides, the edges, or the front of the disk” (‘Ricerche,’ &c., pp. 11, 12). Dr Sonsino took every precaution to prevent error, subsequently verifying his “find” from the same patient. Dr Sonsino directs attention to two of his own characteristic figures of the worm, and subsequently states not only that he found examples of the Filariæ in the urine of this same youth, but also “in the urine of another patient.” The parasites from these two sources being figured side by side, it was clear, from their resemblance, that they referred to one and the same species of entozoon. Dr Sonsino having compared the facts supplied by these cases, was satisfied that the nematodes in question were specifically identical with those that I had previously obtained from my little African patient. However, Dr Sonsino was of opinion that his Filariæ were not precisely the same as those that had been described by Lewis.

On the 8th of April, 1876, I received from Dr William Roberts, of Manchester, some capillary tubes, charged with blood, obtained from a patient suffering from chyluria. The tubes had been transmitted by Dr Bancroft, of Brisbane, Queensland, Australia; and in fulfilment of the donor’s request, Dr Roberts afforded me an opportunity of examining their contents, he having himself verified Bancroft’s statement that they contained Filariæ. It was not until May 22nd that I found opportunity to confirm the observations of Drs Bancroft and Roberts. The contents of some of the tubes had by this time completely dried up; but in others, to which diluted glycerine had been added, the blood appeared tolerably fresh. In what might be reckoned as the sixth part of the contents of one of the tubes, spread on a glass slide, I detected about twenty Filariæ, three of which I sketched in sitû, in order to compare them with the figures of Lewis, and also with others that I had procured from my Bilharzia-patient in the year 1870. There could not, I thought, be any doubt as to the identity of all these sexually-immature nematoids. One novelty, however, presented itself in the presence of a solitary and empty egg envelope, measuring about 1/500 of an inch in its long diameter, and thus corresponding precisely with the ova that I obtained from the urine in my Bilharzia case.

According to Bancroft, chyluria is somewhat common in Brisbane; and the case here brought forward was not the only one of the kind which had already furnished Filariæ in the blood. The patient was a little girl ten years of age.

Thus stood the facts in the spring of 1876. Having informed Dr Bancroft that a nematoid egg had been detected in the Australian blood transmitted to England, he was induced to make further investigations. These happily resulted in the discovery of the adult worm; the circumstances attending the “find” being recorded by Dr Bancroft in a letter written to myself and dated from Brisbane, Queensland, April 20th, 1877. He wrote as follows:—“I have labored very hard to find the parental form of the parasite, and am glad to tell you that I have now obtained five specimens of the worm, which are waiting to be forwarded by a trustworthy messenger.

“I have on record about twenty cases of this parasitic disease, and believe it will be the solution of chyluria, one form of hæmaturia, one form of spontaneous lymphatic abscess, a peculiar soft varix of the groin, a hydrocele containing chylous fluid, together with some forms of varicocele and orchitis. These I have verified. In the colony there are no cases that I can find of elephantine leg, scrotal elephantiasis, or lymph scrotum; but from the description of these diseases in the volume on skin and other diseases of India by Fox, Farquhar, and Carter, and from Wm. Roberts’ article on the latter in his volume on urinary diseases, I am of opinion that the parasitic nature of the same will be established.

“The worm is about the thickness of a human hair, and is from three to four inches long. By two loops from the centre of its body it emits the Filariæ described by Carter in immense numbers.

“My first specimen I got on December 21st, 1876, in a lymphatic abscess of the arm; this was dead. Four others I obtained alive from a hydrocele of the spermatic cord, having caught them in the eye of a peculiar trochar I use for tapping. These I kept alive for a day and separated them from each other with great difficulty. The worm when immersed in pure water stretches itself out and lies quite passive. In this condition it could be easily washed out of hydroceles through a large-sized trochar from patients known to suffer from Filariæ.”

In July, 1877, I announced Bancroft’s discovery in the ‘Lancet,’ naming the parasite Filaria Bancrofti, and in the following September I sent the editor an account of the results of my study of the adult worms received from Brisbane in the interval. These examinations supplied me with the diagnosis already given (p. [181]).

On the 29th of September, 1877, Dr Lewis published a paper in the ‘Lancet,’ wherein, after alluding to my previous announcement respecting the discovery of Filaria Bancrofti, he describes under the name of Filaria sanguinis hominis a mature worm, which was evidently the same parasite. Not unnaturally Dr Lewis put aside the nomenclature I had employed, on the ground that the name originally given by himself to the embryonal form ought to be retained, and that “a new name, if not necessary on anatomical grounds, would only lead to confusion.” Personally I have no objection to Lewis’s specific name, but if the question of priority is to determine the nomenclature, then I fear we ought to call the species Filaria Salisburyii. Obviously the retention of Dr Salisbury’s nomenclature (Trichina cystica) would be unsuitable and misleading.

Fig. 39.—Filaria Bancrofti. a, Female (nat. size); b, head and neck (× 55 diam.); c, tail; d, free embryo (× 400 diam.); e, egg containing an embryo; f, egg, with mulberry cleavage of the yolk (× 360 diam.). Original.

When (prior to Lewis’s discovery of the hæmatozoa) I had myself encountered larval nematodes of the same character as those described by Salisbury, I, like Wucherer, was careful not to employ a special name for an immature form, which might or might not represent a worm hitherto known to science. The paper in which I described the adult worm from specimens supplied by Bancroft appeared in the ‘Lancet,’ Oct. 6th, 1877, the facts being stated as follows:—

On the 28th of August, 1877, I received a small collection of entozoa. The box contained the promised Filariæ, and also eight bottles filled with various intestinal worms taken from animals. The Filariæ were enclosed in four small tubes and preserved in glycerine. Three of the tubes (marked 1, 2, 3) contained sexually-mature worms, the fourth being labelled “Sediment from adult Fil. sang.—young and ova.” I described their contents in succession. Thus, on the 6th of September, 1877, I examined the Filaria in tube No. 3. The specimen was injured and in four portions, these collectively measuring three inches in length. Although, to the naked eye, the worm had appeared to Dr Bancroft to be of the thickness of an ordinary human hair, yet I found it about 1/90″ at the thickest part. It was a female. At the same time I examined the specimen in tube No. 1. This was also a female. Towards the centre of the body a hernial protrusion of the uterine horns and intestine had taken place. In a lithograph sent by Dr Bancroft this specimen was figured and described as the “parent worm of the Filaria sanguinis, emitting young Filaria from two loops.” Later on I examined the contents of tube No. 2. In it I found one tolerably perfect female Filaria, and also a delicate shred forming part of one of the uterine horns of another worm. This filament measured one inch and a half in length, and was coiled round the complete worm. On transferring it to a watch-glass containing water, hundreds of embryos made their escape. Owing to the transparency of the tissues I had much difficulty in finding the reproductive outlet, and the effort to find it was all the greater because Bancroft’s figure had misled me. At length I found the vagina and its orifice close to the head (about 1/20″ from it), the anal orifice being placed within the 1/90″ from the extremity of the tail. The vaginal pouch, 1/100″ long, was crowded with embryos, and a constriction marked its junction with the uterus proper, which appeared to divide lower down at a distance of 1/10″ from the head. Towards the tail a fold of the tuba Fallopii was seen to extend to within 1/20″ of the extremity. All sections of the uterine system were crowded with germs, eggs, and embryos in their usual relative situations.

My examinations of the ova and embryos were chiefly made from the “sediment” sent in a special glass tube. The fully formed embryos were 1/125″ in length by 1/2500″ in breadth. They each showed a double skin, the outer envelope in the more advanced specimens leaving clear spaces at either end of the body, resulting from commencing ecdysis. I saw no trace of intestinal tube, but a central line of condensation marked an early differentiation of the somatic granular contents. The less advanced embryos were mostly enclosed in a chorional envelope, the smallest free embryos measuring only 1/200″ in length by 1/3000″ in breadth. These had no double contour. The ova, whose yolk-contents were still in various stages of cleavage, gave an average long diameter of 1/900 to 1/1000 of an inch.

Such are the facts I made out, and they enabled me to amend the characters of the species.

As regards nomenclature, I associated Dr Bancroft’s name with the sexually-mature worm as being in harmony with the binomial method and little calculated to mislead; moreover, it helped to fix both the source and date of the discovery (Brisbane, Dec. 21st, 1876). The use of this nomenclature detracts nothing from the high merits of Lewis, who first named the immature worm Filaria sanguinis hominis. As it now turns out, both Dr Salisbury and myself had previously been made acquainted with the young of Filaria Bancrofti; but it was reserved for Lewis to discover the hæmatozoal character of the embryos of this worm, and actually to take them from the blood. It was a singular circumstance, that when I was engaged in treating my little African patient for trematode hæmatozoa, it never once occurred to me that the numerous nematoid embryos mixed with the Bilharzia ova were hæmatozoal. As before remarked, it was alleged that my patient had passed worms two or three inches long by the urethra. I therefore concluded that these were the parents of the eggs and embryos, and that all of them were urinary. The inference was wrong, but it has instructively shown how near one may go towards a great discovery without really making it. As regards the larvæ, notwithstanding some slight differences in regard to size and so forth, I have little hesitation in saying that all the embryo forms severally described by Salisbury, by myself, by Lewis, Sonsino, Wucherer, Crévaux and Corre, Silva Lima, Bancroft, Manson, and others, are referable to one and the same species.

Into the clinical bearings of this subject it is impossible for me to enter at any length, but I may remark that these parasites appear to be associated with, if not actually the cause of, several distinct morbid conditions. To one of these Bancroft has given a separate name (Helminthoma elastica). This is a highly elastic form of growth to which I have already alluded under the title of “lymphatic abscess of the arm.” In the first valuable report on Hæmatozoa, by Dr Patrick Manson, of Amoy, China, this careful observer gives interesting particulars of no less than fifteen cases in which hæmatozoa were found. Two of these patients had Elephantiasis scroti, two had lymph-scrotum, two were lepers (one having scrotal disease), two had enlarged inguinal glands, one had anasarca; and of the remaining six, spoken of as having no concomitant disease, one had enlarged glands and abscesses, and another suffered from marked debility. It would thus appear that what is ordinarily termed “good health” is rarely associated with a hæmatozoal condition of the blood in the human subject. The cases given by Lewis and Manson, where absolutely no recognisable disease existed, must be regarded as exceptional. Disease, moreover, may exist without any palpable symptoms being exhibited by the “bearer,” and thus perhaps it was with the hæmatozoal dogs of Gruby and Delafond to which I shall again have occasion to allude. Even those animals that carried upwards of two hundred thousand microscopic Filariæ in their blood appeared to suffer no inconvenience whatever.

In the autumn of 1877 Dr Da Silva Lima published an article in the ‘Gazeta Medica da Bahia,’ in which he dwelt upon the labors and merits of Wucherer, and, judging from an omission in one of my memoirs, he supposed that I had insufficiently acknowledged Wucherer’s claims. A translation of this article appeared in the ‘Archives de Médicine Navale,’ with an important appendix by Dr le Roy de Méricourt. In this addendum the French savant showed that the omission on my part was unintentional, and had been corrected by me in a later memoir. Not only had I been amongst the earliest in England to enforce Wucherer’s claims in respect of the micro-Filariæ, but I had first announced his discoveries in connection with Anchylostoma duodenale. In my translation of Wucherer’s memoir (‘Ueber die Anchylostomum Krankheit’) I spoke of the melancholy satisfaction I had in knowing that the memoir in question was “among the last that appeared from the pen of that gifted and amiable physician.” Some notice of Dr Lima’s paper and its appendix by Dr A. le Roy de Méricourt appeared in the ‘Lancet’ for Jan. 5th, 1878, and I also published a full translation of it, with explanatory notes, in the ‘Veterinarian’ for Feb., 1878. Later on, in the ‘Lancet’ (March 23rd, 1878), Dr Da Silva Lima published an interesting letter correcting a misconception that had incidentally arisen in the mind of a commentator (on the Helminthological work of 1877), and at the same time he pointed to the original facts connected with the discovery of Wucherer’s Filaria. As my views are in perfect accord with those of Dr Da Silva Lima, I can only regret that errors of interpretation should have crept into the discussion. Dr Lima honorably recognises the nomenclature (Filaria Bancrofti) which I proposed for the adult worm, and only claims for Wucherer that which is fairly due.

On the 4th of January, 1878, I received from Dr Patrick Manson a manuscript in which he announced the discovery of the larvæ of Filaria sanguinis hominis in the stomach of mosquitoes. Already, in April, 1877, Dr Bancroft had informed me of his expectation of finding that these insects sucked up the larvæ of the Filaria whilst engaged in their attacks on man. Dr Bancroft’s supposition was a very natural one, but it remained for Manson to make the actual discovery of the existence of human hæmatozoa, or parasites that had been such, within the stomach of Culex mosquito. I lost no time in making the principal facts public (‘Lancet,’ Jan. 12th, 1878). Dr Manson at the same time forwarded for publication a record of thirty-five additional cases of hæmatozoa occurring in Chinese subjects, together with additional particulars of one of the cases already published in the ‘Customs Gazette.’ These were afterwards published as separate contributions in the ‘Medical Times and Gazette.’ Dr Manson likewise forwarded materials for a paper entitled “Further Observations on Filaria sanguinis hominis.” In this communication he gave an analysis of the cases (sixty-two in all) in which he had observed the hæmatozoa, and he added valuable statistical evidence as to the prevalence of Filariæ in the Amoy district, dwelling especially on the influence of age, sex, and occupation in determining the presence of the parasite. He also described the morbid states with which these entozoa were commonly associated.

On the 7th of March, 1878, I formally communicated to the Linnean Society a detailed account of Manson’s investigations relating to the metamorphoses undergone by the Filariæ within the body of the mosquito. In this paper Manson pointed out that the female mosquito, after gorging itself with human blood, repairs to stagnant water for the purpose of digesting the blood, and also for the purpose of depositing its eggs. During this period, which lasts four or five days, the Filariæ undergo remarkable changes. Subsequently, in a more perfect state, they escape into the water, and in this advanced stage they are conveyed to the human body along with the water as drink. Dr Manson persuaded a Chinese, whose blood was previously ascertained to abound with Filariæ, to sleep in a “mosquito house.” In the morning the gorged insects were captured and examined under the microscope. A drop of blood from the mosquito was found to contain 120 Filariæ, but a drop taken from the man’s hand yielded only some thirty specimens. Further stages of development are accomplished within the human host, ending in the sexual maturity of the parasite. After fecundation successive swarms of embryos are discharged by the female worm, a part of whose progeny eventually gains access to the blood.

Before I proceed to summarise the whole body of facts I must in the next place state that Manson and myself contributed a joint communication to the Medical Society of London on the 25th of March, 1878. In this memoir I especially dealt with the question of priority in connection with the discovery of the adult worm. I then restated that the adult parasite was discovered by Dr Bancroft on December 21st, 1876. The discovery was verified by Dr Lewis on August 7th, 1877, by Dr Silva Araujo October 16th, 1877, and by Dr F. dos Santos November 12th, 1877. I gave these dates unhesitatingly, without, however, in any way prejudicing the question already raised in respect of the identity of the worms found in each case. My own mind was fully made up on that point, and affirmatively so. Dr dos Santos’ find was made in conjunction with Dr J. de Moura in a case of lymphatic abscess of the arm. Clinically viewed, the case published by Dr Araujo must be regarded as unique. Not only were adult and embryonic Filariæ found in the same patient, but, what was far more surprising and interesting, the patient displayed in his own person several of the disorders hitherto found apart; and he was more than once attacked by one or two of the diseases. He experienced a first attack of chyluria three years ago, then attacks of craw-craw commencing a year ago, the latter being attributed to bathing in a particular lagoon. He had a second attack of chyluria six months back, at which time lymph-scrotum appeared, and also scrotal elephantiasis. Dr Bourel-Roncière pronounced this case to be unique, and attributed nearly all the disorders to the presence of Wucherer’s embryonic Filariæ. In a very elaborate analysis of and commentary on Dr da Silva Lima’s second memoir, Dr Bourel-Roncière warmly claims for Wucherer the supreme honor in all these discoveries. A number of affections hitherto regarded as distinct, and all of which appear to be due to the action of Filariæ, are regarded by Dr Bourel-Roncière as mere phases of one and the same disorder. This affection he terms Wucherer’s helminthiasis. Dr Manson had indeed arrived independently at a similar conclusion, and I am confident that Wucherer, were he alive, would in this particular aspect of the question be the last to claim priority either to Lewis, to Bancroft, or to Manson.

In this place I may observe that Dr Pedro S. de Magalhães, of Rio de Janeiro, detected free microscopic nematodes in the potable waters of Rio (agua da Carioca), which from their similarity he supposes may have some genetic relation with Filaria Bancrofti. In this opinion I cannot share.

As regards the metamorphoses of the embryo, Manson states that for a little while after gaining access to the stomach of the mosquito the embryo undergoes no change (Fig. [40], a). In a very few hours changes commence, resulting in wider separation of the outer skin and an appearance of transverse markings on the body within (b). In the next stage oral movements occur; the striation becomes more marked, and the outer envelope is cast off (c). Then the striated lines disappear and a dotted appearance is substituted (d). From this condition the embryo passes to what Manson calls the chrysalis stage, in which nearly all movement is suspended and the large spots gradually disappear (e, f, g, h, i, j, k). The tail continues to be flexed and extended at intervals and the oral motions cease. By the close of the third day the embryo becomes much shorter and broader; but the finely pointed tail retains its original dimensions, projecting abruptly from the sausage-shaped body (m, n). Large cells next appear in the interior of the body, and by a little pressure one may detect indications of a mouth (o, p, q, r). At this period the embryo begins to elongate, and at the same time to diminish in width; but the growth takes place chiefly at the oral end of the body. The mouth becomes four-lipped, open, and funnel-shaped, and from it a delicate line can be distinctly traced passing to an opening near the caudal extremity, the tail itself gradually disappearing (s, t). Speaking of the most advanced stage Manson says:—“A vessel of some sort is seen in the centre running nearly the whole length of the body and opening close to one extremity. This end is slightly tapered down and is crowned with three or perhaps four papillæ, but whether this is the head or tail, and whether the vessel opening near it is the alimentary canal or the vagina, I cannot say.” Now it is quite evident, I think, from Manson’s figures that he has here faithfully represented the head and tail, the former (u) to the left, the latter (v) to the right. In his manuscript (from which I am now quoting) there is no special reference to these two figures; but it is easy to see that these terminal sections of the body of the advanced embryo closely correspond with the head and tail of the adult worm (Filaria Bancrofti). The curved line passing to the left (u) evidently indicates the commencement of the partially-formed vagina.

Fig. 40.—Larval Filariæ in various stage of growth from the mosquito; a to d, representing the first stage of metamorphosis during the first 36 hours, e to o, the changes occurring during the second stage, to the close of the third day; p to t, forms seen during the third stage of metamorphosis from the fourth day onwards. The figs. u, v, represent the head and tail only, whilst t shows the young Filaria in an advanced stage, and drawn to a much smaller scale, than the others which are here magnified about 125 diameters. Much reduced from Manson’s original figures.

How completely Manson took the initiative in this part of the work is evident even from Lewis’s own later observations. In a paper published in March, 1878, Dr Lewis, writing from Calcutta and speaking of the rôle of the mosquitoes, says:—“I had repeatedly examined, in a cursory fashion, these and other suctorial insects, but had not observed any parasites suggestive of these embryo-hæmatozoa, hence, when, on receipt of a communication from Dr Manson a couple of months ago, a renewed search was made, I was surprised to find that four out of eight mosquitoes, captured at random in one of the servants’ houses, harboured specimens of hæmatozoa to all appearances identical with those found in man in this country. After this, however, several days elapsed before any mosquitoes could be obtained which contained these embryo-nematoids, and the specimens obtained on the next occasion were devoid of the enveloping sheath, which appears to characterise the kind found in man out here, and apparently, according to Dr Manson, in China also.” Further on Lewis also remarks, “When the insect is caught shortly after feeding and the contents of its stomach examined microscopically, the hæmatozoa, if present, will be observed to manifest very active movements, which may possibly continue for several hours on the slide. If the insect be kept for twenty-four hours before examination it is probable that the movements of the parasites will be more sluggish, and their form probably altered owing to irregular contractions and dilatations of their substance—changes which may also occasionally be observed when embryo-hæmatozoa are preserved on a glass slide, and they may sometimes be kept alive thus, if in suitable media, for two or three days. When the insect is not examined till the third day, the contained parasites will probably manifest marked signs of disintegration—and possibly every indication of life will have disappeared from many of the specimens. After the third or fourth day I have not seen any active specimens of these entozoa in the stomach or in any part of the alimentary canal of the mosquito; those which remain have undergone more or less fatty degeneration, and are readily stained with eosin, which, as far as my experience goes, is not the case so long as they are alive and active. After the fourth or fifth day it is very rare that traces of any hæmatozoa-like objects can be detected at all, so that it must be inferred either that they have succumbed to the digestive action of the insect’s stomach or been disposed of along with the excreta.” An important addendum by Lewis records a fortunate incident as follows:—“It was observed that nearly all the mosquitoes captured in one of the servants’ houses contained hæmatozoa, so that the supply of suitable insects in all the stages of their growth became amply sufficient for all requirements. The result of the examinations under these favorable conditions has shown that although the stomach digests a great number of the ingested hæmatozoa, as mentioned above, nevertheless others actually perforate the walls of the insect’s stomach, pass out, and then undergo developmental stages in its thoracic and abdominal tissues.”

I may here observe that Sonsino has instituted a comparison between the embryos of this Filaria and those of Anchylostoma, by which it appears that the former measure 0·218 to 0·330 mm. in length, and those of Anchylostoma 0·430 mm. The hæmatozoa are about forty times longer than broad, and the larval anchylostomes only fourteen times longer. The tail of Filaria is conspicuously longer.

In the ‘Lancet’ for June 22nd, 1878, an announcement appeared from the pen of Mr D. H. Gabb, of Hastings, stating that a patient under his care formed the habitat of Filaria sanguinis hominis; and in the autumn of the same year a paper which I read to the Linnean Society in the spring was published. In that paper the following summary was offered:

1. Filaria Bancrofti is the sexually-mature state of certain microscopic worms hitherto obtained either directly or indirectly from human blood.

2. The minute hæmatozoa in question—hitherto described as Wucherer’s Filariæ, Filaria sanguinis hominis, Trichina cystica, Filariose dermathemaca, and so forth—are frequently associated with the presence of certain more or less well-marked diseases of warm climates.

3. The diseases referred to include chyluria, intertropical endemic hæmaturia, varix, elephantiasis, lymph scrotum, and lymphoid affections generally, a growth called helminthoma elastica, a cutaneous disorder called craw-craw, and also leprosy.

4. It is extremely probable that a large proportion, or at least that certain varieties of these affections are due to morbid changes exclusively resulting from the presence of Filaria Bancrofti or its progeny within the human body.

5. It is certain that the microscopic hæmatozoa may be readily transferred to the stomach of blood-sucking insects, and it has been further demonstrated that the digestive organs of the mosquito form a suitable territory for the further growth and metamorphosis of the larval Filariæ.

6. The character of the changes undergone by the microscopic Filariæ, and the ultimate form assumed by the larvæ whilst still within the body of the intermediate host (Culex mosquito), are amply sufficient to establish the genetic relationship as between the embryonal Filaria sanguinis hominis, the stomachal Filariæ of the mosquito, and the sexually-mature Filaria Bancrofti.

In the month of September, 1878, I received a letter from Dr da Silva Lima announcing the fact that Dr Araujo had verified the existence of the embryos of Filaria Bancrofti in mosquitoes, at Bahia. These mosquitoes had, I understood, attacked a French priest in whose blood Dr Araujo also detected Filariæ. Thus, it fell to the lot of Araujo, through his untiring zeal, to verify in Brazil all the separate discoveries of Bancroft, Manson, and Lewis.

In the October issue of the ‘Pathological Society’s Transactions’ for 1878 Dr Bancroft records numerous cases of filarious disease, and he gives a succinct account of the circumstances connected with his original discovery.

In a clinical lecture published October 12th, 1878, Dr Tilbury Fox seeks to diminish the value of these discoveries, characterising helminthological investigators as merely “recent writers.” Dr Fox denies that Filariæ are a cause of true elephantiasis, but admits the occurrence of “elephantoid inflammation and inflammations due to Filariæ.” Dr Fox’s statement that “Filariæ have not been found in uncomplicated elephantiasis, that is, in disease without chylous exudation,” seems to me to be directly at variance with Manson’s recorded experiences. I hold that Manson has confirmed the truth of Lewis’s views, and that he has thoroughly proved that (to use his own words) “varicose groin glands, lymph scrotum, elephantiasis, and chyluria are pathologically the same disease.” In the first instance I was myself led to conclude that some of the forms of elephantiasis might be due to other causes than obstruction of the lymphatics caused by the presence of Filariæ; but the explanations of Lewis, of Bancroft, and of Manson more especially, have almost entirely removed this doubt. Those who seek to explain away the connection between genuine elephantiasis and Filariæ will do well to study Manson’s last important memoir. He shows that “elephantiasis and allied diseases are much more frequently associated with the parasite than are other morbid conditions.” This fact is brought out very clearly in his table of 670 cases, from which it appears that 58 per cent. of cases of Filaria are associated with elephantoid disease.

When this opposition to Manson’s views is likely to cease (on the part of those who do not happen to have been in any way instrumental to the discoveries in question) it is not easy to say. In a brief communication which appeared in the last number of the ‘Medical Times and Gazette’ for 1878, Dr Manson successfully combats the doubts that have been entertained respecting the rôle of the mosquito. Because Lewis found that canine hæmatozoa were digested, and thus perished in the stomach of mosquitoes, it had been argued that human hæmatozoa must necessarily undergo similar processes, and consequently die. Those who oppose the views of helminthologists in respect of the intermediary host-function of insects on such grounds can have very little general, and still less special knowledge of the phenomena of parasitism. It is the old story. When any new discovery is made, it must always pass through the ordeals of denial and doubt before it can be generally accepted as true; and, as in the case of Jenner’s immortal discovery, there will always remain a certain number of peculiar people who show themselves hostile to every advance in science. Dr Manson may take comfort from this consideration, and rest assured that the value of his discovery is quite unaffected by the opposition referred to.

Since I communicated the results obtained by Manson, Lewis, myself, and others to the Linnean Society, an even more exhaustive summary of the facts has been published by Dr Bourel-Roncière, in the ‘Archives de Médecine Navale.’ The distinguished author does full justice to the writings of English helminthologists, and dwells, with emphasis, upon the finds and interpretations of Lewis, Manson, and Bancroft. Incidentally, also, he comments upon Sir Joseph Fayrer’s early recognition of the etiological identity of hæmato-chyluria and elephantiasis, on other than helminthic grounds. The frequent concurrence of the two affections had especially struck Sir J. Fayrer as pointing to a probable common origin. He had also surmised that the disorders might be due to parasites.

Dr Bourel-Roncière, alike with the caution, precision, and logical reasoning of a cultured savant, concludes his elaborate review in the following terms:—“There are the facts. Certainly, many points remain obscure, many problems await a solution, and the last word has not been said on the actual part which the parasite plays in the pathogenesis of the affections above enumerated—its mode of action, the importance of its rôle, the extent of its pathological domain, the habitat of its progenitors, their identity, and so forth. All these questions will only be elucidated by necroscopic researches, which at present remain absolutely wanting.”

“However, notwithstanding the doubts which hover over the future value of these curious discoveries, it is difficult not to recognise their importance in the study of certain tropical diseases—which up to the present time have been attributed to vague and undetermined causes—hæmato-chyluria and elephantoid affections principally. Apart from the interest which attaches to the natural history of the nematoids, they raise, in effect, etiological and prophylactic questions, the extreme importance of which we believe it would be needless to demonstrate. It is greatly to be desired that the researches should be taken up in other parts of the globe, where endemicity and perhaps greater facilities for necroscopic investigation would render them fruitful—Cochin-China, Tahiti, &c. Fresh observations are necessary to confirm the first and to fill up notable gaps. The way has been brilliantly opened by the English and Brazilian physicians. Let our colleagues in the French colonies put their shoulders to the wheel; they have before them a vast field of study to explore.”

Since the above remarks were written I have received several communications from Dr Bancroft, and also others from Drs da Silva Lima, Araujo, Assis Sousa, Paterson, Hall, of Bahia—the two last named being English physicians in practice there. I regret that I can do little more than refer to the writings of these authors in the Bibliography below; but I may observe that Drs Paterson and Hall have ascertained that the proportion of the population of Bahia affected by Filaria is 81/2 per cent. Out of 309 persons examined, 26 had hæmatozoa, which is, roughly, one in twelve, or more strictly, 8·666 per cent.

Amongst recent memoirs that by Sir J. Fayrer, read to the Epidemiological Society on the 5th of February, 1879, deserves especial attention. In regard to its significance, I have only space to remark that, much as we may regret the little interest shown by our hospital physicians and surgeons in this subject, it is particularly gratifying to see experienced Indian officers like Sir J. Fayrer, Mr Macnamara, and Dr John Murray, coming forward both to aid and render homage to their junior colleagues in Eastern parts, who are successfully labouring to advance the cause of helminthology and scientific medicine.

In concluding this subject I may observe, that one of the greatest hindrances to the due recognition of the remarkable part played by parasites in the production of human endemics and animal epizoötics arises from the circumstance that no inconsiderable number of minute worms may infest a host without obvious injury. This immunity proves nothing. If, for example, we take the case of Trichina we find that several millions of entozoa may exist in the human, or, at all events, in the animal bearer, without producing any symptom of discomfort. In such cases it is not possible to determine the strict limits of health and disease; nevertheless, were we to double the amount of infection, the imaginary line of demarcation is at once bridged over and the parasites become acknowledged as directly responsible for grave symptoms which may even prove fatal to the bearer. Again, the relative strength and size of the infected host constitute factors that materially limit the power of the parasite for injury. Where the entozoa are of minute size, and where their injurious action is primarily due to the mechanical obstructions they set up, it is clear that the virulence of the helminthiases, or resulting diseased conditions, will mainly depend upon the number of intruders.

Another consideration of the highest value in relation to epidemiology generally, and more especially in regard to the practical question as to the best methods of stamping out parasitic plagues, is that which refers to the life-history of the entozoon itself. It must be obvious that in all cases where the intermediate host can be captured and destroyed, the life-cycle of the parasite can be broken and interrupted, and if thus broken, there is an end to the further propagation of the species. The knowledge that we have acquired by experimental research in this connection has already enabled us to set a limit upon the prevalence of certain well-known disorders, such as Trichinosis, Cestode-tuberculosis, and so forth. In the case of epizoötics, however, which are indirectly due to the action of intermediary hosts that cannot be readily captured or destroyed, then our power of arresting the disease is comparatively limited. In the present case it is probably not necessary either that a dead or living mosquito should be swallowed to insure infection; but it is necessary that the parasitic larvæ should have dwelt within the mosquito in order to arrive at the highest stage of larval growth prior to their re-entrance within the human territory. Undoubtedly, the larvæ are swallowed with potable waters. Perfect filtration before use would certainly check, if in course of time it did not totally extinguish several of the many virulent diseases that now afflict the inhabitants of warm climates.

It is with reluctance that I terminate this article, but in the closing pages of this work (Book II, Section V) I hope to add a few more particulars in reference to Lewis’s latest researches.

Bibliography (No. 23).—Araujo, A. J. P. da Silva, “Memoria sobre a Filariose,” &c., Bahia, 1875; see also ‘Arch. de Méd. Nav.,’ 1875 and 1878.—Bancroft, J., “Cases of Filarious Disease,” in ‘Pathological Soc. Trans.’ for 1878, vol. xxix, p. 407.—Bourel-Roncière, “Résumé of and Commentary upon the writings of Silva Lima, Silva Araujo, and others,” in ‘Arch. de Méd. Nav.’ for March, 1878.—Idem, “Pathologie exotique. De l’hématozoaire nématoïde de l’homme et de son importance pathogénique, d’après les travaux Anglais et Bréziliens des dernières années;” ibid., for August and Sept., p. 113–134 and p. 192–214, 1878.—Cobbold, T. S., “Discovery of the Adult Representative of Microscopic Filariæ,” ‘Lancet,’ July, 1877, p. 70.—Idem, ‘On Filaria Bancrofti,’ ibid. Oct., 1877, p. 495.—Idem, “Verification of Hæmatozoal Discoveries in Australia and Egypt,” ‘Brit. Med. Journ.,’ June, 1876.—Idem, “Obs. on Hæmatozoa,” ‘Veterinarian,’ October, 1873.—Idem, “Remarks on the Ova of another Urinary Parasite (in the paper on ‘Bilharzia’) from Natal,” ‘Brit. Med. Journ.,’ July 27th, 1872, p. 89; see also Bibl. No. 12.—Idem, “Entozoa in Relation to the Public Health” (various papers), ‘Med. Times and Gaz.,’ Jan. and Feb., 1871.—Idem, ‘Worms’ (l. c., p. 151), 1872.—Idem, “Hæmatozoa; Fresh Discoveries by Lewis,” ‘Lancet’ for Feb. 6, 1875.—Idem (brief notice), the ‘Veterinarian,’ p. 209, March, 1875.—Idem, “On the Discovery of the Intermediary Host of Filaria sanguinis hominis,” ‘Lancet,’ Jan. 12, 1878, p. 69.—Idem, “On the question of Priority of Discovery,” Rep. of Med. Soc. of Lond., in ‘Lancet,’ March 30, 1878, p. 465.—Idem, ‘Mosquitoes and Filariæ’ (explanatory note), in ‘Brit. Med. Journ.,’ March 16, 1878, p. 366.—Idem, “On the Life-history of Filaria Bancrofti, as explained by the discoveries of Wucherer, Lewis, Bancroft, Manson, Sonsino, myself, and others,” “Report of the Proceed. of the Linnean Soc.” for March 7, 1878, in ‘Pop. Science Rev.,’ April, 1878; and afterwards published in extenso in ‘Journal Linn. Soc.,’ Oct. 31, 1878.—Idem, “On Filaria Bancrofti,” in Part iv of a series of papers on the Parasites of Man, in the ‘Midland Naturalist,’ August, 1878.—Idem, “On Filaria sanguinis hominis,” in a letter to the ‘Lancet,’ July 13, 1878, p. 64.—Idem, “Filariæ and Leprosy” (case from Bancroft); ‘Lancet,’ Feb. 1, 1879.—Corré, A., “Note sur l’helminthe rencontré dans les urines hémato-chyleuses,” ‘Rev. des Sci. Nat.,’ 1872.—Cossé, “Sur l’helminthe rencontré par Wucherer et Crevaux,” &c., ‘Rev. Montpellier,’ tom. i, p. 190.—Couto, A., “These de concourso,” Bahia, 1872.—Crevaux, J., “De l’hématurie chyleuse, &c.,” 1872; also in ‘L’Union Médicale,’ 1872 (abs. in ‘Brit. Med. Journ.,’ July, 1872, p. 100); also in ‘Arch. de Méd. Nav.,’ 1874; and in ‘Journ. de l’Anat. et de la Physiol.,’ 1875 (see also Silva Lima).—Davaine, C., ‘Traité,’ 2nd edit., p. 944; ‘Hæmatozoaires,’ supp., 1877.—Fayrer, Sir J., “Filaria sang. hom.,” ‘Lancet,’ March 16, 1878, p. 376.—Idem, “Elephantiasis Arabum,” ‘Med. Times and Gaz.,’ Dec. 1, 1877, p. 588; “On the Relation of Filaria sanguinis hominis to the Endemic Diseases of India,” in the ‘Lancet,’ Feb. 8 and 15, and reprinted from the ‘Med. Times and Gazette’ (same date), 1879.—Gabb, D. H., letter in ‘Lancet,’ June 22, 1878.—Leuckart, l. c., s. 638, 1876.—Lewis, T. K., “On a Hæmatozoon in Human Blood,” ‘San. Comm. 8th Rep.,’ Calcutta, 1872; ‘Med. Press,’ 1873, p. 234; ‘Indian Ann. Med. Sci.,’ 1874; ‘Lond. Med. Rec.’ (abs. by myself in vol. i, p. 5), 1873.—Idem, “Pathological Significance of Nematode Hæmatozoa,” ‘Tenth Ann. Rep.,’ 1873, Calcutta (reprint), 1874; ‘Ind. Ann.,’ 1875.—Idem, “Remarks regarding the Hæmatozoa found in the Stomach of Culex mosquito,” ‘Proc. Asiatic Soc. of Bengal,’ March, 1878, p. 89.—Idem, “Flagellated Organisms in the Blood of Rats” (being portion of a paper on “The Microscopic Organisms found in the Blood of Man and Animals,” in ‘14th Annual Report of the San. Comm. with the Govt. of India’), in the ‘Quart. Journ. of Micr. Science,’ Jan., 1879.—Idem (published since the present article was written), “The Nematoid Hæmatozoa of Man,” ibid., April, 1879.—Lima, J. F. da Silva (with Crevaux), ‘Memoria sobre hematuria chylosa ou gordurosa des paizes quentes;’ extrahida da ‘Gazeta Medica da Bahia,’ 1876; repr. in ‘Arch. de Méd. Nav.,’ Dec., 1878 (see also Le Roy de Méricourt).—Magalhães, Pedro S. de, “Filarias em estado Embryonario, encontradas n’agua tida como potavel (agua da Carioca),” ‘O Progresso Medico,’ Dezembro, 1877, p. 57.—Idem, “Nota sobre os nematoides encontrados no sedimento deposito pela agua (potavel) da Carioca,” ‘O Prog. Med.,’ 1 de Setemb., 1878, p. 577.—Idem, “Caso de filariose de Wucherer;” ibid., 15 de Setemb., 1878, p. 589.—Makina, M.D., “Filaria in Chyluria,” letter in ‘Lancet,’ Feb. 22, 1879, p. 286.—Manson, P., “Rep. on Hæmatozoa,” ‘Customs Gazette,’ No. 33, Jan.–March, 1877; see also ‘Med. Times and Gaz.’ for Nov. 10, p. 513, Nov. 17, p. 538, and Nov. 24, p. 563; Dec. 1, p. 589, 1877; also Jan., 1878.—Idem, “Additional Cases;” ibid., March 2, 9, 23, 1878.—Idem, “On Filaria sanguinis hominis, and on the Mosquito considered as a Nurse,” ‘Proc. Linn. Soc.,’ March 7, 1878; see also report in ‘Nature,’ March 28, 1878, p. 439.—Idem, “On Filaria sanguinis hominis, clinically considered in reference to Elephantiasis, Chyluria, and allied Diseases,” ‘Rep. of Med. Soc. of Lond.,’ in ‘Lancet,’ March 30, 1878.—Idem, “Further Observations on Filaria sanguinis hominis,” “Med. Rep.” for April–Sept., 1877, in ‘Customs Gazette,’ Shanghae, 1878.—Idem, “The Development of the Filaria sanguinis hominis,” ‘Med. Times and Gaz.’ for Dec. 28, 1878, p. 731.—Méricourt, A. Le Roy de, in Appendix to an art. entitled “Nouvelle phase de la question relative à la nature parasitaire de la chylurie. Découverte du représentant adulte de la ‘Filaire de Wucherer,’” par le Dr da Silva Lima, from the ‘Gaz. Med. da Bahia,’ Sept., 1877; see also the ‘Lancet,’ Jan., 1878, p. 22 (editorial notice).—Moura, J. de, ‘These de Concourso,’ 1877.—O’Neill, “On Craw-craw,” ‘Lancet,’ Feb., 1875.—Pareira, A. P., “On Bilharzia and Chyluria,” ‘Gazeta Med. da Bahia,’ No. 9, 1877 (noticed in ‘Lancet,’ Feb. 2, 1878).—Salisbury, J. H., “On the Parasitic forms developed in Parent Epithelial Cells of the Urinary and Genital Organs,” ‘Hay’s American Journ.,’ vol. iv, 1868, p. 376.—Santos, F. dos, in ‘Gaz. Med. da Bahia,’ March, 1877.—Sonsino, P., ‘Richerche,’ &c., 1874; ‘Della Bilharzia,’ &c., 1876; ‘Sugla Ematozoi,’ &c., 1876 (see Bibl. No. [12]).—Idem, “On the Diagnosis of Embryos of Filaria,” in his paper ‘Sull’ Anchylostoma duodenale;’ ‘Estr. dall Imparziale,’ 1878.—Sousa, M. de A., ‘Memoria sobre a Elephantiasis do escroto,’ Bahia, 1878.—Wucherer, O., “Noticia Preliminar,” &c., ‘Gaz. Med. da Bahia,’ Dec., 1868.—Idem, ‘Sobre Hematuria no Brazil,’ ibid., Sept., 1869; see also “Méricourt’s trans. (De l’hématurie intertropicale observée au Brézil),” ‘Arch. de Méd. Nav.,’ p. 141, 1870, and the fuller references quoted in my memoir; ‘Linn. Soc. Journ., Zool.,’ vol. xiv, p. 368.

Filaria Loa, Guyot.—Although further examinations of this worm will probably result in placing it in some other genus than Filaria, yet it is by no means clear that Diesing was right in placing it with the genus Dracunculus. I therefore abandon the nomenclature adopted in my previous treatise. According to the surgeon, Guyot, who made seven separate voyages to the coast of Angola, these worms cannot be confounded with the Dracunculus. They are quite white, and relatively much thicker than guinea-worms. Under the title of Filaria oculi Moquin-Tandon has spoken of certain small nematodes as “not uncommon in the negroes of the Angola coast;” and he gives other localities where it occurs. The worms are identical with those described by Guyot as dwelling beneath the conjunctivæ of negroes at Congo and in the Gaboon region generally. The parasite is rather more than an inch and a quarter in length, being pointed at one end and blunt at the other. It is termed Loa by the natives, who state that after a period of several years the worm voluntarily quits the organ. The disease is thus naturally cured. This parasite enjoys a tolerably wide geographical distribution, as it has been observed by Clot Bey in a negress who had come from the town of Monpox, situated on the banks of the River Magdalena; by Sigaud, who saw one in the eye of a negress in Brazil; by Blot, at Martinique, who saw two in a negress originally from Guinea; by Bajon, who met with one in a little negro girl who had come from Guadeloupe; by Mongin, who found one in a negress who had been living in the Island of San Domingo; and by Lestrille, who removed one from beneath the conjunctiva of a negro who came from Gaboon.

Bibliography (No. 24). Davaine, l. c., p. 839.—Guyon, ‘Gaz. Méd. de Paris,’ p. 106, 1841, and in ‘Micr. Journ. and Struct. Record,’ p. 40, 1842, and in ‘Dublin Journ.,’ vol. xxv, p. 455, 1839.—Idem, ‘Compt. Rendus,’ tom. lix, p. 743, 1865.—Guyot, in ‘Mém. par Arrachait,’ p. 228, 1805.—Küchenmeister, l. c., s. 322.—Lestrille, in Gervais and Van Beneden’s ‘Zool. Med.,’ 1859, also quoted by Davaine, l. c., 2nd edit., p. 840.—Leuckart, l. c., s. 619.—Moquin-Tandon, A., ‘Zool. Med.,’ Hulme’s edit., p. 363, 1861.

Filaria lentis, Diesing.—This is a doubtful species. The worm was first discovered by Nordmann, in a case of lenticular cataract under the care of Von Gräfe, and it was afterwards found by Jüngken in a similar case, as recorded by Sichel. There is also the instance described by Gescheidt, in which Von Ammon operated, and from which brief descriptions of the worm have generally been taken. In this case there were three worms, two measuring about 1/6″ and the third 1/15″ in length. In Jüngken’s case (exhibited by Quadri, of Naples, at Brussels) the worm was more than 3/4″ long. In another case, reported by M. Fano, the worm was somewhat less than 1/4″ long. There is no certain evidence that any of these various worms had developed sexual organs in their interior. It is true that the reproductive organs were described in two of the worms observed by Gescheidt; but after a due consideration of all the facts I fear we must conclude that all the worms in question were sexually-immature and wandering nematodes, possibly referable to Gurlt’s Filaria lacrymalis, as Küchenmeister long ago suggested.

Bibliography (No. 25).—Cobbold, ‘Entozoa,’ p. 332.—Davaine, l. c., p. 821 et seq.Diesing, ‘Syst. Helm.,’ p. 625.—Fano, ‘Traité des Malad. des Yeux,’ tom. ii, p. 498; and in ‘Rec. de Méd. Vét.,’ p. 140, 1869; quoted by Davaine, p. 831.—Gescheidt, Ammon’s ‘Zeitsch.,’ 1833, s. 435.—Leuckart, l. c., Bd. ii, s. 622.—Nordmann, l. c., Bibl. No. 2, s. 7, 1832.—Sichel, ‘Iconogr. Ophth.,’ p. 707, 1859.

Filaria labialis, Pane.—This is a filiform cylindrical worm measuring an inch and a quarter in length. The mouth is armed with four papillæ arranged in the form of a cross. The tail of the female is blunt, the vaginal outlet being placed at a very short distance from its extremity, and a little above or in front of the anus. This parasite was found by a medical student at Naples. It occupied the cavity of a pustule in the upper lip, giving rise to considerable irritation. Only the male worm is at present known.

Bibliography (No. 26).—Davaine, l. c., edit. ii, Synopsis, p. 107.—Leuckart, l. c. (with a fig.), Bd. ii, s. 616.—Pane, “Nota di un elminte nematoide,” in ‘Annali dell’ Acad. degli aspiranti Naturalisti,’ Napoli, ser. 3, vol. iv, 1864.

Filaria hominis oris, Leidy.—In the fifth volume of the ‘Proceedings of the Philadelphia Academy of Natural Sciences’ (1850, p. 117) Dr Leidy furnishes the following description of this worm as gathered from the examination of a simple specimen preserved in alcohol, and labelled as having been “obtained from the mouth of a child.” Body white, opaque, thread-like; mouth round, simple; posterior extremity obtuse, furnished with a short, curved, epidermal hooklet, 1/500″ in length, by 1/2000″ in diameter at base. Dr Leidy offers some speculations as to its origin, but from whatever source the worm was obtained by the bearer, it seems to be an immature form. Its length is five inches and seven lines.

Filaria (Nematoideum) trachealis, Bristowe and Rainey.—This is another very doubtful worm. It was originally described in the ‘Pathological Society’s Transactions’ for 1855. It evidently represents only a juvenile stage of growth of some species of round worm. Rainey discovered a considerable number of these worms in the trachea and larynx of a person who died from a disease affecting the lower extremities. Individually the parasites measured about the 1/50″ in length.

Strongylus (Filaria) bronchialis, Rudolphi.—This is a small nematode. The male measures rather more than half an inch, whilst the female is upwards of an inch in length. The caudal appendage of the male is furnished with a bilobed, membranous, half-bell-shaped bursa. This surrounds the cloacal outlet, the latter concealing a double spiculum. The tail of the female is sharply pointed, the anal orifice being placed a little in front or above. The body is filiform, of a pale yellow color. It is about 1/50″ broad in the male, and 1/35″ in the female. The mode of reproduction is viviparous.

The original specimens were discovered by Treutler in Germany, during the winter of 1791, in the bronchial glands of an emaciated subject, whilst those sent to Diesing for description were discovered by Dr Fortsitz at Klausenberg, in Transylvania, in the lungs of a boy six years old. Diesing and Weinland suggested the identity of Filaria bronchialis and Strongylus longevaginatus, whilst Küchenmeister went further, and pronounced them to be one and the same species.

Bibliography (No. 27).—Cobbold, ‘Entoz.,’ p. 357.—Davaine, ‘Synops.,’ l. c., ‘Synopsis’ cix.—Küchenmeister, l. c., Eng. edit., p. 381.—Leuckart, l. c., s. 618.—Treutler, F. A., “De vermibus filiformibus (Hamularia lymphatica) in glandulis conglobatis bronchiorum repertis,” in ‘Obs. Pathol. Anat.,’ 1793.—Wedl., ‘Die im Menschen vorkommenden Helminthen’ (quoted by Leuckart), Wien, 1862, s. 22.

Eustrongylus gigas, Diesing.—This is by far the largest nematode known to science, the male sometimes measuring a foot in length and the female more than three feet, whilst the breadth of the body reaches half an inch at the thickest part. Though fortunately very rare in man, this worm is known to occur in a great variety of animals, especially in weasels. According to Weinland and Jackson, it is particularly abundant in the kidney of the North American mink (Mustela vison), destroying the substance of the organ, the walls of which become the seat of calcareous deposit. It has been found in the dog, wolf, puma, glutton, raccoon, coati, otter, seal, ox, and horse.

The body of the adult worm is cylindrical, more or less red in color, and somewhat thicker behind than in front. The head is broadly obtuse, the mouth being supplied with six small, wart-like papillæ, two of which correspond with the commencement of the two lateral lines of the body. These lines are also distinguishable from other six longitudinal lines traversing the body from end to end by the presence of very minute papillæ which are less closely arranged towards the centre (Leuckart). The tail of the male shows a simple, thick, cup-shaped bursa, which is destitute of rays, and partly conceals the simple spiculum. The tail of the female is blunt and pierced by the centrally placed anal opening. The vulva is situated near the head in the ventral line. The eggs are stout and oval, measuring 1/300″ in length by about 1/550″ in breadth.

As regards development the recent researches of Schneider have shown that certain kinds of fish play the part of intermediary bearer. Balbiani preserved the ova in water for more than a year without their hatching, and all his attempts to rear the larvæ in the intestines of the dog by direct experiment failed. Similar feeding experiments upon fishes and reptiles also failed. The embryo, when removed from the egg, measures 1/104″ in length. It is vermiform, having a pointed head and simple mouth. Balbiani describes the buccal cavity as containing a protractile stylet. Notwithstanding the negative results obtained by Balbiani’s experiments on fishes, Schneider (from anatomical data, which Leuckart confirms) has placed it almost beyond question that the worm hitherto known as Filaria cystica is the sexually-immature Eustrongylus gigas. This worm is found encysted beneath the peritoneal membrane in Galaxias scriba and Synbranchus laticaudatus. It is worthy of remark that the genus Galaxias comes nearer to the Salmonidæ than to the pike family, whilst the Synbranchi are tropical oceanic fishes. Probably the sexually-immature worm occurs in other fishes, especially the Salmonidæ.

Remarkably fine examples of the adult worm may be seen in the Hunterian Collection, Lincoln’s Inn, and in the Museum of the Royal Veterinary College. The human example is undoubtedly genuine. The dissections in the Hunterian Collection of specimens were made by me in 1865. Objection has been taken to my description of the œsophagus as “spiral.” In Sheldon’s specimen it is certainly twisted upon itself, precisely in the manner in which Davaine has also figured it (‘Traité,’ fig. 68); but I cannot here give further anatomical particulars. Drelincourt found two worms sexually united in the kidney. When once the parasites have gained access to this organ, rapid destruction of the glandular substance follows. Ultimately the kidney is reduced to the condition of a mere cyst or bag, which, besides the worms, contains a quantity of sanguineo-purulent matter. Frequently only one worm is present, but oftener two or three. In the kidney of a puma D’Azara’s friend, Noseda, found no less than six worms, whilst Klein obtained eight from the kidney of a wolf.

Bibliography (No. 28).—Azara, F. de, ‘The Natural History of the Quadrupeds of Paraguay,’ trans. from the Spanish by W. P. Hunter; Valpy’s edit., p. 43, 1837; Black’s, 1838; French edit., p. 313, 1801.—Albers, ‘Beitr. z. Anat. &c.,’ Bd. i, s. 115.—Aubinais, ‘Revue Méd.,’ 1846, p. 284.—Balbiani, “Recherches,” &c., ‘Compt. Rend.,’ 1869, p. 1091; ‘Rec. de Méd Vét.,’ 1870, p. 5.—Bickford, “Spec. of Str. gigas found in the Kidney of a Dog,” the ‘Veterinarian,’ 1859, p. 312.—Blainville, ‘Dict. des Sci. Nat.,’ tab. 29.—Blanchard, ‘Ann. des Sci. Nat.,’ 1849, p. 186.—Idem, in ‘Cuvier’s Règne Animal’ (Masson’s edit.), ‘Les Intestinaux,’ p. 57, pl. 27.—Blasius, ‘Obs., &c.’ (with fig. of Lumbricus in renibus hominis), 1674, p. 125.—Bobe-Moreau, in ‘Journ. de Méd.,’ tom. xlvii.—Boerhaave, ‘Aphorism.,’ 1728.—Bremser (l. c., Bibl. 2), s. 223.—Chabert, ‘Traité des maladies verm. dans les Animaux,’ 1782.—Chiaje, ‘Comp. d. Elmintogr. umana,’ p. 106.—Clamorgan, J. de, ‘La Chasse de Loup,’ 1583 (quoted by Davaine, the worms being described as “serpents et bêtes fort venemeuses”).—Cobbold, ‘Entoz.,’ p. 358.—Idem, ‘Catalogue of Entozoa in the Museum of the Roy. Coll. of Surg.,’ “Descr. of preps. Nos. 19–25,” p. 3, 1866.—Idem, “Parasites of Man,” ‘Midland Naturalist,’ Dec., 1878.—Collet-Meygret, “Mém. sur un ver trouvé dans le rein d’un Chien,” in ‘Journ. de Physique,’ &c., 1802.—Cuvier, see Blanchard (supra).—Idem, ‘Voyage en Sicile,’ and in ‘Ann. des Sci. Nat.,’ tom. xi.—Davaine, C., ‘Traité,’ l. c., deuxième edit., p. 271 et seq. (with full lit. refs. at p. 290).—Diesing, l. c., vol. ii, p. 325.—Dujardin, l. c., p. 113.—Frank, F., “Ein Spulwürm in der Urinblase eines Hundes,” ‘Hufeland’s Journ.,’ Bd. xviii, s. 112.—Jackson, ‘Catalogue of the Boston Museum,’ 1847, p. 317.—Klein, T. K., “Anatomical Description of Worms found in the Kidneys of Wolves,” ‘Phil. Trans.,’ 1729–30, p. 269.—Küchenmeister, l. c., Eng. edit., p. 376.—Leblanc (rep. by Rayer and Bouley), in ‘Bull. de l’Acad. de Méd.,’ 1850, p. 640; in ‘Rec. de Méd. Vét.,’ 1862, p. 800; and quoted by Davaine.—Leuckart, l. c., Bd. ii, s. 353–401, 1876.—Moublet, “Mém. sur les vers sortis des reins et de l’urethre d’un enfant,” ‘Journ. de Méd-Chir. et Pharm.,’ 1758, pp. 244 and 337.—Otto (Anat.), in ‘Mag. d. Gesellsch. naturf.,’ 1814.—Owen, art. “Entozoa,” in Todd’s ‘Cyclop.’—Rayer, ‘Traité des maladies des reins,’ 1841.—Rayger, ‘Sur un serpent qui sortit du corps d’un homme après sa mort’ (quoted by Davaine, l. c., p. 272), 1675.—Schneider, ‘Monographie der Nematoden,’ 1866, s. 50.—Idem (mit Peters), quoted by Leuckart, l. c., s. 382.—Stratton, in ‘Edin. Med. and Surg. Journ.,’ p. 261, 1843.

Dochmius duodenalis, Leuckart.—Much time might be occupied and wasted over the nomenclature of this parasite. In my previous treatise, and for reasons there stated, I placed it under the genus Sclerostoma. On rather slender grounds Dubini formed the genus Anchylostoma for its reception, but Von Siebold thought that, on account of the absence of symmetry in the arrangement of the so-called dental organs, Dubini’s genus might very well be allowed to remain. Bilharz, Diesing, Küchenmeister, Wucherer, and others have retained the genus as either Anchylostoma or Anchylostomum. Schneider keeps it amongst the Strongyli; but after all that has been said and written there can, I think, be no doubt that if Dujardin’s genus Dochmius is to be retained at all, Dubini’s worm must be placed in it. The comparisons instituted by Leuckart afford sufficient proof of the intimate alliance as between Anchylostoma and Dochmius. Professor Molin thought to meet the difficulty by calling the worm Dochmius anchylostomum, but the specific term, duodenale, should certainly be retained.

Fig. 41.—Male Doch­mi­us duo­den­alis, with bursa sep­arately enlarged. After Küchenmeister.

This worm was discovered by Dubini at Milan, and though at first thought rare, it is now known to be tolerably common throughout Northern Italy. The worm has also been recently found by Dr Kundrata at Vienna, in an Austrian subject. According to Pruner, Bilharz, and Griesinger, it is abundant in Egypt. Griesinger believed that about one fourth of the people of that country suffered from anæmic chlorosis, solely in consequence of the presence of this worm in the small intestines. From Wucherer’s observations especially, we know that Dubini’s worm is not limited to the localities above mentioned, for it occurs in the western tropics, in Brazil, and even in the Comoro Islands.

The worm may be described as a small nematode, the males measuring 3/8″ or rather more, whilst the females extend to very nearly 1/2″ (12 mm.). The head is pointed and tapering, and bent forward, having the mouth directed towards the ventral aspect. The oral opening is armed with four asymmetrically disposed, unequally-sized, horny, conical, converging teeth. The neck is continuous with the cylindrical body, which is 1/80″ in thickness. The body terminates in a straight cone-shaped, or rather sharply-pointed tail in the female, the caudal extremity of the male ending in a partially inflexed, blunt point. In the male there is a cup-shaped, bilobed bursa, the membranes of which are supported by eleven chitinous rays, ten being simple, whilst the median, or odd one, is bifurcated at the summit. The mode of reproduction is viviparous. Adult males and females occur in the proportion of one of the former to three of the latter.

As above mentioned, it was Griesinger who first pointed out the clinical importance of this entozoon. He first explained the manner in which the worm produces anæmia, the persons attacked losing blood as if they were being bitten by innumerable small leeches. Like the rest of their kindred, these worms are veritable blood-suckers. In the first instance the views of Griesinger met with opposition, but they have since received abundant confirmation. Whilst Küchenmeister’s ‘Manual’ furnishes an excellent account of the disorder as known in Europe, we are chiefly indebted to Wucherer for what is known of the disorder in Brazil. The experiences recorded in the ‘Deutsches Archiv für Klinische Medicin’ for Sept. 27th, 1872 (s. 379–400), were amongst the last that appeared from the pen of that gifted and amiable physician. As little or no notice of his writings appears to have been taken by professional men in this country, I depart somewhat from the design of this work when I venture to abstract a few of the clinical particulars which he has supplied. Their importance in relation to sanitary science is obvious, inasmuch as these parasites are introduced into the human body by drinking impure water, or, at least, water which either contains the free larvæ of the worm, or the intermediary bearers that harbor the larvæ.

It should be borne in mind that Dubini’s original discovery was made at Milan in 1838, whilst Griesinger’s recognition of the worm as a cause of the Egyptian chlorosis resulted from a post-mortem examination made on the 17th of April, 1851.

In the journal above mentioned, Wucherer records his own discoveries as follows (‘Ueber die Anchylostomunkrankheit,’ &c.):—“Although Griesinger with well-founded confidence gave an account of his ‘find’ and its significance, yet it remained for a long time unnoticed and unutilised, till at length a case led me to corroborate it. During my many years’ residence in Brazil, especially during the first year, I had very frequent opportunities for witnessing the tropical chlorosis, but seldom to treat it, as it is one of those diseases for which Brazilians seek no medical assistance. Its treatment falls to the lot of the curiosos, curadeiros (quacks), who employ the fresh pulp of a species of fig as a remedial agent with the best results. On the 13th of December, 1865, I was called to the Benedictine monastery in Bahia to see a slave of the order suffering from hypoæmia. The patient was about thirty years of age, married, a strongly built mulatto. He was a field laborer on the Ingua plantation of the order, who exhibited in a conspicuous degree all the symptoms that occur in hypoæmia except the diarrhœa. He was well nourished, but strikingly pale, his whole face, but especially the eyelids, being œdematously swollen, as also were the feet, legs, and hands. The hands and feet were very cold. His appearance betrayed the most horrible anguish or low despondency. With difficulty only could he raise himself, being obliged to lie down again immediately on account of his weakness. Auscultation revealed a diminished respiratory murmur, and bronchial expiration in both lungs. The pulse was very rapid and small, the patient complaining of pain in the region of the heart. He had frequent palpitation when he moved, and he complained of pain in other parts of the body. His abdomen was much distended by gases, but not sensitive to pressure from without, except in the region of the stomach. The urine was clear, its specific gravity 1007 to 10231/2°. Under great difficulties he resided for several months after his marriage at Inhatâ. Earlier he had been on the estates of the order at Rio de S. Francisco. He there suffered for a long time from intermittent fever, but at Inhatâ he entirely recovered. At Inhatâ the slaves frequently suffered from hypoæmia, but in S. Francisco not at all. He appears not to have made any misuse of brandy. The slaves of the order were well cared for, and supplied with good and wholesome nourishing food. The patient had already, for a long period, treated himself with steel wine, yet was continually getting worse and worse. He had not taken the pulp of the fig. As I was unaware he had suddenly become so ill, they hastily despatched a message to the town. There was no good to be expected from the further employment of iron, and the patient was in such a condition that from the very first I despaired of his recovery. I immediately prescribed the pulp of the Gammeleira (Ficus doliaria), but it could not be easily obtained. Considering that the Gammeleira would have a drastic effect, I therefore prescribed two grammes of elaterium, to be divided into eight doses, of which he should take one every three hours.” Dissatisfied with this advice, however, Dr Wucherer goes on to say that on reaching home he carefully looked up the literature of the subject. “In a ‘Geologico-Medical Report’ by Professor Hirch, recorded in the ninety-sixth volume of ‘Schmidt’s Jahrbucher,’ I found how Griesinger had recognised the Anchylostoma as the cause of the Egyptian chlorosis, which was clearly identical with our hypoæmia. He had employed this commended anthelmintic. I resolved the more to prescribe the pulp of the Gammeleira when I found it described as a worm-expelling remedy in Martin’s ‘Systema Materiæ Vegetabilis Braziliensis.’ The next morning, however, when I arrived at the monastery I learnt that my patient died about two hours after a slight evacuation. Only after much resistance would they permit the sectio cadaveris. I merely opened the abdomen, and was surprised to find everything as Griesinger had described. During the next season, through the courtesy of my colleagues attached to the General Infirmary at Bahia, especially of Drs Silva Lima, Faria, and Caldos, I was enabled to open more than twenty bodies of anæmically deceased individuals. All were selected as miserably poor in condition, but only five were bodies of persons in whom hypoæmia was diagnosed, and in these there were a great number of Anchylostomes in the small intestine. The intestines of the other bodies contained either none, one, or a few.” Dr Wucherer next states that he compared the characters presented by his entozoa with those given by Dubini, Diesing, and Von Siebold, and found a perfect agreement throughout. He sent several examples to Griesinger, who also established their identity, and communicated the results of his investigations accordingly (‘Archiv für Heilkunde,’ 1866, s. 387. See also Leuckart, ‘Die Mensch. Par.,’ Bd ii, s. 411). Dr Wucherer also forwarded a number of specimens to Dr Weber, who published a brief account of them with excellent figures (‘Path. Soc. Trans.,’ vol. xviii, 1867, p. 274). As mentioned in the text of his memoir (s. 394), Dr Wucherer also transmitted some strongyloids to myself. “The publication of my observations,” adds Dr Wucherer (‘Gazeta Medica da Bahia,’ 1866, p. 27 et seq.), “had a result in that Dr J. R. de Moura, of Thersepolis, in the province of Rio de Janeiro, sought for Anchylostomes in the bodies of tropical anæmics (Hypöæmikern). He at once found these parasites, as stated in the same journal (for 1866, p. 132). As occurred to myself, he saw no enduring results from the application of the remedies which appeared to be called for, whilst he well knew that unprofessional persons (Nichtärzte) succeeded in obtaining marked results by the exhibition of the pulp of the Gammeleira (Ficus doliaria). The anthelmintic action of this remedy was also unknown to him.” Dr Wucherer then records how his discovery of these entozoa was announced by Dr Jobini to the Rio academy, and how Dr Moura’s observations were subsequently communicated, adding remarks upon the interesting discussion that followed. The general opinion was that the Anchylostomata were not the primary and necessary cause of this tropical anæmia, but rather a co-operating agent in its production. Against this view Dr Wucherer afterwards very properly protested (‘Gazeta,’ Jan. 15th, 1868). In the mean time, says our author, “Dr le Roy de Méricourt, prompted by my first communication, had invited the physicians of the French colony to seek for Anchylostomes. Drs Monestier and Grenet, at Mayotta (one of the Comoro Isles, which lies about 12° S. lat. to the north-east of Madagascar), ascertained the presence of entozoa in hypoæmics. Dr Grenet sent the duodenum and a portion of the jejunum of an hypoæmic corpse to Le Roy de Méricourt, who compared the Anchylostomes with Davaine’s description, and recognised them as examples of A. duodenale.”

“In the year 1868 Dr Rion Kérangel found Anchylostomes in the bodies of hypoæmics in Cayenne. Thus, the occurrence of Anchylostomes in hypoæmics has been authenticated by Pruner, Bilharz, and Griesinger, in Egypt; by myself, Dr Moura, Dr Tourinho, and other physicians, in Brazil; by Monestier and Grenet, in the Comoros; and by Rion Kérangel in Cayenne. It thus also appears, from the wide separation of these several localities, that the Anchylostomes, if duly sought for, will be found in many other countries.”

These details given by Wucherer are so precise and instructive that I could not have further abridged them without injustice to his record. The bearing of the foregoing facts in relation to the question as to how we may hope to arrest the fatal action of many of these nematodes is sufficiently obvious. That strongyles and their allies prove highly destructive to man and beast is as well established as any other recognised conclusion in medical science; nevertheless, there are those who still doubt the power of these nematodes in relation to the production of fatal epidemics. I shall deal with the sanitary bearings of the subject hereafter. In conclusion, I may mention that Dr da Silva Lima has forwarded specimens of Anchylostomum to the Hunterian Museum, where they may be seen.

Bibliography (No. 29).—Bilharz, ‘Zeitschr. f. wiss. Zool.,’ Bd. iv, s. 55.—Cobbold, ‘Entozoa,’ p. 361.—Idem “Remarks on Recent Contributions to our Knowledge of the Parasitic Nematoids, especially in reference to the Wasting Diseases they produce in Man and Animals,” the ‘Veterinarian,’ Jan., 1876, p. 1.—Davaine, l. c., pp. 118 and 931.—Diesing “Revis. der Nematoden,” ‘Sitzb. d. m.-naturw. cl. d. k. Akad.,’ 1860, s. 716.—Dubini, ‘Entozoografia,’ &c., 1849.—Griesinger (quoted above), see also ‘Arch. f. Phys. Heilk.,’ 1854.—Küchenmeister, l. c., Eng. edit., p. 383.—Leuckart, l. c., ss. 410–455.—Molin, ‘Il sottordine degli Acroffali,’ p. 61 (quoted by Leuckart).—Siebold, ‘Zeitsch. f. wiss. Zool.,’ 1852, s. 55.—Sonsino, P., L’Anchilostoma duodenale in ‘relazione coll’ Anemia progressiva perniciosa,’ Egitto, 1877.—Idem, ‘Sull.’ Anch. duod., 1878 (see also Bibliog. No. 27, both reprinted from ‘Imparziale.’)—Weber, H., l. c., 1867.—Wucherer (quoted above), 1872.

Fig. 42.—Outline of a fe­male Dra­cun­cu­lus medi­nen­sis. Nat. size. Orig­inal.

Dracunculus medinensis, Cobbold.—This parasite is popularly known as the guinea-worm, or Medina-worm. Probably Lister was the first writer who distinctly spoke of it as the Dracunculus, 1690, the same title being applied to it by Kaempfer, 1694. Be that as it may, Gmelin, long afterwards, placed the parasite in the genus Filaria, at the same time adopting the specific title medinensis. This had been previously employed by Linneus, who, however, regarded the worm as belonging to the genus Gordius. It being clear from the distinctive characters of the entozoon that it was desirable to separate it from the Filariæ, and that no better generic name could be devised than Dracunculus, I thought it right to combine Lister’s and Gmelin’s nomenclature as above, 1864. Leuckart pursued a similar course, crediting Linneus with the titles.

The guinea-worm having been known from the earliest times, it is not surprising that its true nature long remained a mystery. Any one who has read Küchenmeister’s elaborate narrative of the historical significance of the Dracunculus will hardly have failed to arrive at the conclusion that Moses was probably the earliest writer on the endemic disorder which is occasioned by this parasite. There can be no doubt that the “fiery serpents” which afflicted the children of Israel during their stay in the neighbourhood of the Red Sea were neither more nor less than examples of our Dracunculus. It is further evident that Plutarch spoke of Dracunculi, when in the eighth book of his ‘Symposiacon,’ he quotes Agatharchidas as stating that the people taken ill on the Red Sea suffered from many strange and unheard-of attacks, amongst other worms, from “little snakes, which came out upon them, gnawed away their legs and arms, and when touched retracted, coiled themselves up in the muscles, and there gave rise to the most insupportable pains.” In order to render the passage more readable, it will be seen that I have slightly altered the original version (‘Parasites,’ s. 305).

The guinea-worm may be described as a nematode measuring from one to six feet in length, having a thickness of 1/10th of an inch. The body is uniformly cylindrical, terminating below in a more or less curved and mucronately pointed tail. The head is flatly convex or truncate, having a central, simple mouth, which is surrounded by four equi-distantly and cruciately disposed papillæ. The mode of reproduction is viviparous, the body enclosing a prodigious number of hatched embryos, which, by distension of the uterine ducts, almost entirely obliterate the somatic cavity. Notwithstanding the statements of Owen to the contrary, the male Dracunculus is at present altogether unknown.

The guinea-worm possesses a comparatively limited geographical range, for not only is it proper to the tropical regions, but within intertropical limits it is almost exclusively confined to certain districts in Asia and Africa. Thus, according to Künsenmuller, as quoted by Busk, it occurs endemically in Arabia Petræa, on the borders of the Persian Gulf and Caspian Sea, on the banks of the Ganges, in Upper Egypt, Abyssinia, and the coast of Guinea. “In America the guinea-worm is unknown, except in persons who have had communication with Africa or other parts where it is indigenous. The island of Curaçoa is the only locality in the New World which offers an apparent exception to this fact, and it would be highly desirable to ascertain the real state of the case in this instance.” The observations of Chisholm showed that the Dracunculus is really prevalent in several of the West Indian islands, especially in Grenada, and the still later investigations of Dr Da Silva Lima point to its former prevalence in Brazil. Now, the worm is rarely seen at Bahia. Mr Busk said:—“Though endemic only in the above-mentioned parts of the world, it would yet appear that all races of mankind are obnoxious to the attacks of the Filaria when exposed to what may be called the contagion; that is, when placed in circumstances under which it might be supposed a contagious seminium could be conveyed to them.” Mr Busk also added:—“I have known many instances tending to prove that, in order that a European should become infected with the guinea-worm on the coast of Africa, it is not necessary that he should have been on shore at all. It has been quite sufficient for him to have exposed the bare surface of some parts of his person to the water in the native canoes alongside, or, it may be, to the discharge from the sores of those laboring under the disease. This mode of its introduction accounts for the frequency with which the legs and feet are attacked by the parasite, in preference to other parts of the body, as it will always, I believe, be found that the men who have become so affected have been in the habit of going about with bare feet, as is common among sailors in warm latitudes. That the contagious material is conveyed in water is also further indicated by the well-known fact that in India, where it is the custom of the natives to carry water in skins on their backs, the worm makes its appearance on the back and shoulders and upper part of the body.” These views were published by Busk in 1846, and I am free to confess that—confirmed as they appeared to be by subsequent and independent testimony—they completely dominated my conceptions as to the mode of ingress of the young parasites within the human bearer. Thus, those of our Indian troops which were most exposed during the rainy season, subsequently exhibited evidence of having been invaded by the Dracunculus. As, moreover, the period of incubation of the entozoon commonly extends from twelve to fifteen months, it necessarily happened that the disease often showed itself in localities far distant from the spot where the troops originally contracted the disorder. The statement that the period of incubation of the worm is not less than a year, is probably incorrect, since Carter mentions that in a school of fifty boys bathing in a certain pond at Bombay—the sediment of which swarmed with microscopic tank-worms (Urobales palustris, Carter)—twenty-one were attacked with Dracunculus during the year, whilst the boys of other schools, bathing elsewhere, remained, with few exceptions, uninfected. This is a remarkable occurrence, and it points to the possibility of the young Dracunculi being confined to particular pools. That they should, whether occupying the bodies of intermediary bearers or not, be more abundant in some waters than others, is just what might be expected, since such a distribution is in harmony with a recognised law affecting the abundance or limitation of species in particular localities. Much, indeed, has been written respecting the nature of the soil and geological formations occurring in the Indian worm-districts, but the speculative views enunciated on this point are little worthy of credit. Those who desire information on this head should at all events consult the valuable writings of Smyttan, Greenhow, Bird, Forbes, Chisholm, and Aitken, who, apart from the question at issue, supply abundance of practical information.

Fig. 43.—a, b, Head and tail of the adult guinea-worm (magnified 10 and 18 diameters respectively); c, embryo (magnified 500 diam­eters). Original.

Into the anatomy of the adult Dracunculus I do not enter, but I may remark in passing, that the structure of the worm has been exhaustively treated of by Busk and Bastian. A résumé of their views is given in my introductory treatise. Carter and Leuckart have also added important details. As regards the structure and development of the young worms, I have to observe that the discovery of the viviparous mode of reproduction in Dracunculus is due to Jacobson. Nearly a quarter of a century ago I recognised the fact that the uterine organs of the adult worm almost completely filled up the perivisceral cavity, and that they were crowded with microscopic worms. Referring to this “find,” the late Sir George Ballingall, of Edinburgh, in his well-known work on ‘Military Surgery,’ recorded the circumstance in the following terms:—“The Assistant Conservator of the Anatomical Museum in our University has detected in the oviduct of an adult specimen from my collection myriads of minute and perfectly-developed (embryonic) Dracunculi. They can be very well seen with an half-inch object-glass, but their structure is best exhibited if the magnifying power be increased to two hundred and fifty diameters linear.” As already stated in my introductory treatise, these observations were made during the winter of 1853–54. In July, 1854, M. Robin made a similar statement after examining a fresh Dracunculus which had been extracted from the leg of a man by M. Malgaigne. Robin, not unsuitably, compared the worm to a double tube, one tubular sheath, as it were, enclosing the other. “The second tube,” he distinctly affirms, “is the oviduct, or, rather, that part which represents the uterus. The young still remaining in the uterus were nearly all coiled, sometimes with the tail sallying outwards, at others rolled like the rest of the body.” I have thought it only due to Robin and myself to show that from the first we were perfectly well acquainted with the fact of the “great development of the genital tube and of its close adherence to the parietes of the body.” To be sure, many discrepancies occurred in our writings, and in those of Busk and Carter. It was Bastian’s skill and good fortune to correct these errors. Thus, most of us agreed in recognising a slightly trilobed or tripapillated mouth; but Carter failed to demonstrate the existence of these tubercles, and spoke of the oral aperture as being simple and “punctiform.” The body throughout its three upper fourths appeared to me to be cylindrical, but Robin found that it was flattened. It is finely striated transversely, except at the part where it contracts to form the slender, pointed tail. According to Carter, Robin, and Davaine, the young attain a length of about 1/33 of an inch, but Bastian gives it as about 1/42″. In thickness, Carter gives the approximative diameter as 1/633″, Robin makes it 1/990″ to 1/1320″, whilst Bastian gives their breadth at 1/1428″, and Davaine at 1/2500″. I estimated their greatest length and breadth to be 1/30″ by 1/1000″. Robin and myself thought we recognised a distinct, rounded, anal orifice; and whilst Busk, on the one hand, saw nothing which in the slightest degree indicated the presence of an anal opening, Carter, on the other hand, described the structure which we called the anus as a gland, at the same time placing the alimentary outlet on one side and a little above it. According to Bastian, “the intestinal tube is about 1/87″ in length, and appears to consist of a simple canal of varying calibre, pursuing a nearly straight course, and terminating exactly at about the middle, in length, of the worm.” Like Robin, Bastian recognised œsophageal and stomachal divisions, and in a few examples he observed the cæcal or terminal portion of the intestine to be partially reflected upon itself. In regard to the circular opening which Robin and myself described as the anus, Bastian says there is a rounded body, “about 1/2200″ in diameter, with a dark or light spot in the centre, according to the varying focal distance, and which seems to represent a central aperture. Sometimes, above this, traces of two or three large cells may be recognised, whilst behind nothing definite can be made out, save that the cavity of the body is visible for about 1/400″. In other specimens of the young worm the central body and spot are wanting, but, in its stead, two lateral sacculi are met with, about 1/3300″ in diameter, that communicate with the exterior by a minute channel through the integuments, which can sometimes be distinctly recognised. At other times the channel is obscured by protrusion, which appears to have taken place through it, of a minute bilobed papilla, projecting 1/10,000″ from the side of the body. When the projections are seen, the sacculi are indistinct.”

Fig. 44.—Embryos of Dra­cun­cu­lus. Mag­ni­fied 500 diam­eters. After Bastian.

As Bastian found the young in all stages of development from the germ condition 1/5000″ in diameter up to the perfect embryo, and as, moreover, he, like the rest of us, could detect no sexual orifice in the adult Dracunculus, he was led to express his belief that the young were produced agamogenetically. He went so far as to call the germs pseudova. It was with great reluctance that I dissented from the views of so gifted an observer as Bastian; nevertheless, later researches have shown that I was justified in not hastily concurring in the theory of a non-sexual mode of reproduction for Dracunculus.

Among the many advances of modern helminthology, the discovery of the true source of the guinea-worm is not the least important. To the late M. Fedschenko (the lamented and accomplished Russian traveller, who lost his life in a snowstorm on the Alps), science stands indebted for this memorable advance. Fedschenko showed that the embryos of Dracunculi, after quitting the human host, succeed in effecting an entry into the bodies of entomostracous crustaceans belonging to the genus Cyclops. Within these intermediary bearers, after twelve hours’ sojourn, the embryos undergo a change of skin, attended with subsequent growth. Here they remain to complete their larval development, which takes place within a period of five weeks, or, as Fedschenko himself told me, one month and six days. At length, as perfected larvæ, they are, together with their crustacean hosts, transmitted to the stomach of the ultimate or human bearer. It is probable that sexual maturity is next acquired within the human stomach, copulation following. After this, the females migrate to the situations in which they are found beneath the skin of the human bearer, whilst the males perish and pass out with the fæces. Thus much I gathered from M. Fedschenko himself when he visited this country, and I possess a sketch of the larvæ made by him at the time (October 23rd, 1873). One of the figures represents a larva which has undergone ecdysis, the long and narrow embryonic tail being supplanted by one which is blunt and forked at the tip. The somatic contents of the embryo have at the same time differentiated into a complete intestinal tube, and a constriction marks the junction of the œsophagus with the stomach. There is also internally an oval-shaped mass of cells near the centre of the body. These represent the commencement of the reproductive organs.

What I had gathered from Fedschenko in conversation thus epitomises that which has since been much more fully stated by Leuckart; and it is only fair to add that the Russian traveller was led up to his discovery by the previous investigations of Leuckart respecting the young of Cucullanus. The Leipsic helminthologist had, indeed, specially instructed Fedschenko as to the probable source of Dracunculus.

It is often thus that science makes its clear advances, since a master-mind is needed to set others on the right track. The embryos of Cucullanus and Dracunculus bear a close resemblance to each other, and the similarity of the types is continued on, though not in the same degree, in the next stage of larval growth, after ecdysis. The higher larvæ of both have their tails trifurcate at the tip, the head of the Dracunculus-larva being distinguished by the presence of a pair of papillæ. In the case of Cucullanus the embryos are, according to Leuckart, passively transferred to the stomach of Cyclops by the mouth; but in the case of Dracunculus, Fedschenko saw the embryo in the act of perforating the bodies of the little crustacea at the ventral surface, where the segments are bound together by a thin and easily penetrated connecting membrane. The larvæ then proceed to coil themselves within the limbs, as many as six or even a dozen of the parasites being occasionally found within the body of a single crustacean host. When they have reached full larval growth they measure about 1/25″ in length. Of course, after attaining this stage, it is a matter of conjecture as to the precise way in which their final destiny is accomplished. Fedschenko fed dogs and cats with the infected crustacea, but failed to rear Dracunculi in these animals. Clearly, these carnivora were unsuitable hosts. Could Fedschenko have experimented on man the result would probably have been very different. Arguing from what happens in the case of Cucullanus amongst fishes, and Trichina in man, there can be little doubt that all the further and final changes undergone by the larvæ are accomplished within the human host. These changes are usually, if not invariably, consequent upon a direct transference of the infested entomostraca along with water used as drink. Thus, it must at once be evident that the simple sanitary precaution of filtering water before use is amply sufficient to ensure the prevention of attacks of dracontiasis or the guinea-worm disease. The theosophical remedy of Moses against this invasion by fiery serpents, as the worms were called in his time, and the modern prophylactic measures dictated alike by science and common sense, thus stand in striking contrast the one to the other. In the nature of things it must ever remain that unreason and reason will select diametrically opposite methods of action, equally, no doubt, with the good intention of bringing about beneficial results.

From what has now been advanced, it will be seen that as regards the mode of infection the views categorically expressed in my previous work (‘Entozoa,’ p. 387) cannot be maintained. What, however, is there stated in respect of treatment still holds good in the main, even as regards prophylaxis.

Bibliography (No. 30).—Adam, ‘Trans. Med. and Surg. Soc.,’ Calcutta, 1824.—Aitken, W., ‘The Science and Practice of Medicine,’ 6th edit., vol. i, 1872.—(Anonymous), “Review of the writings and opinions of Duncan, Johnson, Bird, Mylne, Kennedy, Chisholm, H. Scott, A. J. Robertson, Smyttan, Macgregor, Thomas, Mosely, Morehead, Twining, and others, on the Dracunculus or Guinea-worm,” in ‘Corbyn’s India Journ. of Med. and Phys. Sci.,’ vol. ii, p. 118, 1836.—(Anon.), “The Guinea-worm very Prevalent at Bokhara,” ‘Boston Med. and Surg. Journ.,’ 1843, p. 387.—Balfour, J., ‘Ind. Ann. Med. Sci.,’ 1859, p. 175.—Ballingall, G. (l. c., supra), 1854.—Bastian, H. C., “On the Structure and Nature of the Dracunculus or Guinea-worm,” ‘Linn. Soc. Trans.,’ vol. xxiv, p. 101, 1863.—Berncastle, J., in the ‘Lancet,’ 1851.—Bird, J., ‘Calcutta Med. and Phys. Trans.,’ 1825, p. 151.—Bremser (l. c., Bibl. No. 2), s. 194.—Brett, ‘Surgical Diseases of India,’ 1840; see also ‘Med.-Chir. Rev.,’ 1841.—Bruce, N., ‘Edin. Med. and Surg. Journ.,’ 1806, vol. ii, p. 145.—Busk, G., ‘Micr. Soc. Trans.’ (original series), 1846.—Carter, H. J., “Note on Dracunculus in the Island of Bombay,” ‘Bombay Med. and Phys. Soc. Trans.’ (new series), No. 2, p. 45, 1853–54; see also postscript, p. 252.—Idem, “Further Observ. on Dracunculus,” ‘Bomb. Med. and Phys. Soc. Trans.’ (new series), No. 4, p. 215, 1857–58.—Idem, “On Dracunculus and Microscopic Filaridæ,” ‘Ann. of Nat. Hist.,’ vol. iv (third series), 1859.—Idem, “Notes on Dracunculus,” &c., ‘Ann. of Nat. Hist.,’ vol. ix (third series), 1862.—Chapotin, ‘Bull. des Sci. Med.,’ 1810.—Charvet, ‘Ann. des Sci. Nat.,’ 1834.—Chiaje (l. c., Bibl. No. 2), p. 99.—Chisholm, C., “On the Malis Dracunculus or Guinea-worm (in Grenada),” ‘Edin. Med. and Surg. Journ.,’ vol. xi, 1815; see also the ‘Veterinarian,’ vol. ix, p. 508, 1836.—Clark, ‘Med.-Chir. Rev.,’ 1840.—Clarkson, N. F., “Alleged Case in the Horse,” the ‘Veterinary Record,’ 1845, p. 73.—Clot-Bey, ‘Aperçu sur le ver dragonneau observé en Egypte,’ 1830.—Cobbold, ‘Entozoa,’ p. 373.—Cuvier, ‘Règne animal,’ Orr’s Eng. edit., 1849, p. 644.—Davaine, ‘Traité,’ l. c., edit. ii, p. 783 (full lit. refs.), 1878.—Dickson, ‘Path. Soc. Trans.,’ 1851.—Drummond, ‘Med. Commentaries,’ 1793, p. 294.—Dubois, ‘Edin. Med. and Surg. Journ.,’ vol. ii, 1806.—Duncan, ‘Calcutta Med. and Phys. Soc. Trans.,’ 1835.—Ewart, J., “Questions relating to Dracunculus,” in a review of his memoir on the “Vital Statistics of the Meywar Bheel Corps,” in the ‘Madras Quart. Journ. of Med. Sci.,’ vol. i, 1860, p. 462.—Fedschenko, ‘Protocol of the Promoters (Freunde) of the Natural and Physical Sciences at Moscow’ (in the Russian language), 1869 and 1874 (quoted by Leuckart).— Forbes, D., “Observ. on Dracunculus” (extr. from the ‘Half-yearly Reports of the diseases prevailing at Dharwar in the 1st Grenadier Regiment, in the year 1836’), ‘Bombay Med. and Phys. Soc. Trans.,’ vol. i, 1838, p. 215.—Gibson, A., “Note on the Prevalence of Dracunculus,” in his remarks on the “Diseases of the Deckan,” in ‘Bomb. Med. and Phys. Soc. Trans.,’ vol. ii, 1839, p. 209.—Gramberg, ‘Geneeskundige tijdschrift voor nederl. Indie,’ 1861, p. 632 (quoted by Leuckart).—Greenhow, H. M., ‘Indian Ann. of Med. Sci.,’ vol. vii, 1861, p. 31.—Grierson, D., “Observ. on the Dracunculus, as it prevailed in the 22nd Regiment, N.I., from April till September, 1841,” ‘Bomb. Med. and Phys. Soc. Trans.,’ No. 4, 1841, p. 90.—Grundler, in ‘Commerc. Litt. Nov.,’ 1740, p. 239.—Henderson, J., “Note respecting Four Cases of Dracunculus in the 48th Regiment,” ‘Madras Quart. Journ.,’ vol. iii, 1841, p. 353.—Horton, J. A. B., ‘Army Med. Reports,’ 1868, p. 335.—Kennedy, R. H., ‘Calcutta Med. and Phys. Soc. Trans.,’ 1825, p. 165.—Küchenmeister (l. c., Eng. edit.), p. 389.—Leuckart (l. c., Bibl. No. [1]), s. 644–725.— Lewis, T. R., in ‘On a Hæmatozoon,’ &c. (l. c., Bibl. No. [23]), p. 30 et seq.Lima, Da S., “Remarks on the Filaria medinensis, or Guinea-Worm; on the occurrence of this Parasite endemically in the Province of Bahia; on its entrance into the human body by drinking water,” in the ‘Veterinarian,’ Feb., March, et seq., 1879.—Lister, ‘Phil. Trans.,’ 1690, p. 417.—M’Clelland, J., ‘Calcutta Journ. of Nat. Hist.,’ vol. i, 1841, p. 366.—M’Grigor, J., “On the Guinea-worm” (in his “Account of the Diseases of the 88th Regiment in Bombay”), ‘Edin. Med. and Surg. Journ.,’ vol. i, 1805, p. 284.—Morehead, C., ‘Calcutta Med. and Phys. Soc. Trans.,’ vol. vi, 1833, p. 418; also noticed in ‘Edin. Med. and Surg. Journ.,’ vol. xliv, 1835.—Idem, part ii, ‘Calcutta Med. and Phys. Soc. Trans.,’ vol. viii, 1836–42.—Murray, J., “Guinea-worm a very Common Disease at Sattara” (in his Official Report on the Hospital, &c.), ‘Bombay Med. and Phys. Soc. Trans.,’ No. 9, art. vi, p. 198, 1847.—Oke, W. S., “Case of Guinea-worm,” ‘Prov. Med. and Surg. Journ.,’ vol. vi, 1843.—Oldfield, “Case of Dracunculus” (from Laird and Oldfield’s “Narrative of an Expedition into the Interior of Africa”), ‘Dublin Journ.,’ vol. xii, 1838.—Paton, “Cases of Guinea-worm,” ‘Edin. Med. and Surg. Journ.,’ vol. ii, 1806.—Raddock, “A Case of Guinea-worm,” ‘Indian Med. Gaz.,’ Oct., 1877, p. 265.—Scott, W., “Remarks on the Dracunculus,” in a letter to the Medical Board, Madras, ‘Edin. Med. and Surg. Journ.,’ vol. xvii, 1821.—Leverance, C. E., “History of a Case of Guinea-worm,” from ‘Amer. Med. Times,’ in the ‘Glasgow Med. Journ.,’ vol. ix, 1861–62, p. 377.—Smyttan, G., “On Dracunculus,” ‘Calcutta Med. and Phys. Soc. Trans.,’ vol. i, 1825, p. 179.—Stewart, L. W., ‘Indian Ann. of Med. Sci.,’ vol. vi, 1858, p. 88.—Twining, W., “Cases of Dracunculus,” ‘Calcutta Med. and Phys. Soc. Trans.,’ vol. vii, 1835.

Fig. 45.—Head of Oxyuris vermicularis. Highly magnified. After Busk.

Oxyuris vermicularis, Bremser.—Of all the parasites infesting the human body this is the one concerning which the medical practitioner is most frequently consulted, partly on account of its remarkable frequency in children, and more particularly on account of the difficulty often experienced in getting permanently rid of it. The Oxyuris vermicularis is by no means confined to young persons, seeing that adults are infested even to old age. It is familiarly known as the threadworm or seatworm. The male measures about 1/6″, and the female from 1/3″ to 1/2″ in length. The female possesses a long capillary tail, which terminates in a three-pointed end. The extremity is said to act as a kind of holdfast. The tail of the male is obtusely pointed. In both sexes the body presents a more or less fusiform shape, the anterior end being narrowed to form a somewhat abruptly-truncated head, which is often rendered very conspicuous by a bulging of the transparent integument surrounding the mouth. This presents in profile the aspect of winged appendages (fig. 45). The oral opening is tripapillated, leading into a triangular œsophagus. The integument is transversely striated, and of a silvery-white appearance. The spicule is simple, single, and very minute. The eggs are oblong and unsymmetrical. They measure about 1/900″ from pole to pole, and 1/1400″ transversely.

Fig. 46.—Section of a female Oxyuris vermicularis, magnified 220 diameters (after Busk); and also several free eggs (original). a, With an imperfectly formed embryo; b, c, d, with three tadpole-shaped embryos, magnified 450 diameters.

Many years back (1863) I pointed out that the most advanced eggs whilst still within the body of the pregnant female contained tadpole-shaped embryos, and about the same time the fact was noticed by Claparède. In his beautiful and scholarly memoir, ‘De la formation et de la fécondation des œufs chez les vers Nématodes,’ he wrote concerning the ova as follows:—“The egg, which exhibits the form of a very narrow disk in the ovary, acquires the shape of an elongated ellipsoid in the oviduct, and at the surface differentiates itself into a very thick vitelline membrane. Then it forms a strong and resisting chorion, which imparts to the egg an outline similar to that of a bridge’s span. It has an oval figure flattened at one of its sides. This chorion is very fragile; it frequently gives way under slight pressure from the thin plate of glass which covers the object. It extends itself considerably under the action of acetic acid, acquiring a size three or four times greater than that of the egg. The constitution of this chorion is perfectly identical in the eggs both before and after impregnation. It is, nevertheless, easy at first sight to know whether or not we have to deal with a fecundated egg. In the impregnated females the uteri are filled with thousands of ova, each one of which encloses an embryo already well formed. The ventral surface of the embryo and the tail are, without exception, applied to the flattened side of the egg. The embryo is very broad in the body, and occupies all the interior space. An embryo such as Küchenmeister has represented under the form of a small filiform worm folded on itself, and only occupying a very small part of the cavity of the egg, is never to be seen. In the non-fecundated females, on the other hand, the uteri are filled with eggs, which, instead of the embryo, enclose a non-segmented yolk furnished with a large germinal vesicle. This vesicle is not visible so long as the eggs have the form of thin disks; it only shows itself when the eggs begin to acquire an elliptical form in the oviduct. It is, however, probable that this vesicle is the same which was originally visible in the ovary.” The chorion itself is homogeneous, but in an allied species (Oxyuris spirotheca) Gyoery and Claparède found that this egg-covering consists of spirally-coiled bands resembling the tracheal spiral fibre of an insect. Under suitable conditions the tadpole-shaped embryos rapidly assume a vermiform character. The investigations of Leuckart have shown that “one only needs to expose the eggs to the action of the sun’s rays in a moistened paper envelope when, at the expiration of five or six hours, the tadpole-shaped embryos will have already become slender elongated worms.” According to Heller, the simplest way to rear the vermiform stage of Oxyuris is to put a number of the eggs in a glass tube filled up with saliva. The tube should then be placed in the arm-pit, in which situation it can be carried about with little inconvenience. In a few hours the transformations will commence and go on continuously until the vermiform condition is attained. If, as remarked in my ‘Lectures,’ it be asked whether the embryos which have escaped into the bowel are capable of arriving at the vermiform stage, the answer is in the affirmative; for, as Leuckart says, “the elongated embryos are to be found not only in the fæces but also in the mucus of the rectum above and around the anus.” Vix has also asserted that free vermiform embryos are occasionally to be detected in the intestine of the human bearer along with the eggs; this hatching within the lower bowel, however, must, in my opinion, be regarded as exceptional. Heller is of the same opinion. According to Leuckart, the escape of the embryos from the eggs “ordinarily takes place under the action of the gastric juice, also primarily in that condition when they have by some means or other gained access to a new bearer.” Prof. Leuckart and three of his pupils courageously infected themselves by swallowing the eggs, and had the satisfaction of observing young Oxyurides in their stools fifteen days afterwards.

Fig. 47.—Adult male Oxy­uris ver­mic­u­la­ris. Magnified. After Küchenmeister.

From the united labors of Professors Zenker and Heller it is now rendered certain that all the further changes necessary to bring the larvæ to sexual maturity are accomplished within the small intestines of the human bearer; and it is not necessary that a change of hosts should occur at any time during the life of the parasite. Infection ordinarily takes place by the accidental and direct conveyance of the eggs that are lodged in the neighbourhood of the victim’s anus to the mouth. Since the victim may accomplish this during sleep, it is not in all cases fair to charge infected persons with uncleanliness. On the other hand, it too often happens that due care in this respect has not been exercised, and from such persons you may remove the eggs of Oxyurides from the margins of the finger nails. One aristocratic person, who was infested by myriads of these entozoa, confessed to me that in his extreme distress, and consequent rage, he had freely bitten the live worms in halves between his teeth. He had thus exposed himself to a terrible revenge, since multitudes of the ova entering his mouth subsequently found their way into the stomach and intestines. By whatever mode the eggs are conveyed to the mouth their subsequent passage to the stomach ensures their being hatched. In the duodenum and other divisions of the small intestines, as Zenker and Heller have shown, the embryos undergo transformation, casting their skins, and growing with great rapidity. Probably not more than three weeks or a month is necessary to complete their growth. Heller obtained mature worms from an infant only five weeks old. Finally the worms are transferred to the cæcum, which constitutes, so to speak, their headquarters. It is an error to suppose that the lower bowel or rectum forms their especial habitat, nevertheless the most approved manuals, vade mecums, and general treatises have for a long time supported this erroneous view. The error had been pointed out by Stricker in 1861.

The symptoms produced by Oxyurides are occasionally very serious. In the mildest cases they have a tendency to undermine the health. As remarked in my ‘Entozoa,’ the unpleasant sensations chiefly develop themselves in the evening and at night, consisting for the most part of feelings of heat and irritation within and around the margin of the anus. The symptoms may become extremely distressing and almost intolerable, especially when the itching extends to the genito-urinary passages, in consequence of the escape and migration of the parasites about these parts. By-and-by various sympathetic phenomena, such as restlessness, general nervousness, itchings at the nose, involuntary twitchings, grinding of the teeth during sleep, chorea, convulsions, and even epileptiform seizures, may supervene. At the age of puberty special local disorders arise, the nature of which will be readily understood when merely spoken of as the morbid phenomena of sexual irritation. In the female the occurrence of pruritus and leucorrhœa is not uncommon, accompanied or not, as the case may be, with hysteria in various forms. There is usually general asthenia, with more or less emaciation. The anæmia is sometimes remarkable, but in place of anorexia, which is, however, an occasional symptom, one frequently finds a most voracious appetite, especially in young people. Sometimes there are obscure symptoms simulating those of local organic disease.

About the treatment of the disorder I have nothing to say here, further than to urge the benefits of the preventive measure of cleanliness. Like Zenker and Heller, I have obtained the eggs of oxyurides from beneath the finger-nails of young people. In one lad all the nails had been carefully bitten down to their roots, but from beneath a minute projecting portion that was left on the right fourth-finger I procured two eggs. Their demonstration under the microscope convinced both parent and child of the necessity of frequently employing local and general ablutions. Personal cleanliness is essential. In this connection an able biologist has ventured to hazard a statement to the effect that “probably any infected person who adopted the requisite precautions against reinfection from himself or others would get well in a few weeks without treatment by drugs.” Dr Ransom bases his belief on the known facts of the life-history of this entozoon, as recorded more especially by Leuckart. I regret that I cannot fully share Dr Ransom’s views, and still less should I think it right by my silence to seem to endorse his statement to the effect “that every person who is shown to be infested with those very common entozoa, Oxyuris vermicularis and Trichocephalus dispar, is thereby demonstrated to have swallowed minute portions of his own or another person’s fæces.” This is putting the case too strongly. No doubt the eggs of oxyurides swallowed by ourselves must have previously passed through some person’s rectum; as such, either separately or mayhap collectively, in the body of the maternal parasite. That does not, however, justify the statement, that we “have swallowed” part of our own or of some other person’s excrement. The eggs ought not to be regarded as constituent portions of the fæcal matter. Perhaps Dr Ransom will say that the surfaces of these eggs, being in contact with fæcal matter, must carry infinitesimal particles on their surfaces, and it is to such that he refers. As, however, a large proportion of the ova escape with their parents, whilst they are still lodged within the maternal worm, it cannot be held that these intra-uterine ova carry fæcal matter on their shells. Commonly the eggs are swallowed in the separate, free, and dry state. In water they perish quickly. The act of eating with unwashed hands is a fertile source of infection, more especially if the meal be taken either in bed or in the bedroom.

Bibliography (No. 31).—Alexander, J., “On Vermination,” ‘Lancet,’ 1833.—Anderson, W., “On Santonine, with especial reference to its use in Roundworm and Threadworm,” ‘Brit. Med. Journ.,’ April, 1864, p. 443; also in Braithwaite’s ‘Retrospect of Medicine,’ vol. xlix (synopsis, p. 20), 1864.—Barry, J. M., “On the Origin of Intestinal Worms, particularly the Ascaris vermicularis,” ‘Trans. Assoc. of Fell. and Licent. of King’s and Queen’s Coll. of Phys. in Ireland,’ vol. ii, 1878, p. 383.—Bremser, l. c., s. 79.—Buckingham, “Ascarides causing Erotomania,” from ‘Bost. Journ., U.S.,’ in ‘Med. Gaz.,’ 1857.—Claparède, E., “On the Formation of the Egg and Fertilisation in the Nematoidea,” from the ‘Zeitsch. f. w. Zool.,’ translated by Dallas in ‘Ann. Nat. Hist.,’ vol. i (third series), 1858.—Idem (memoir quoted in the text above), Genève, 1859.—Cobbold, T. S., ‘Worms,’ Lect. xii-xv, 1872.—Idem, ‘Entozoa,’ p. 362.—Idem, ‘Brit. Med. Journ.,’ Aug., 1873.—Idem, ‘Tapeworms and Threadworms,’ 2nd edit., 1872.—Idem, ‘Lancet,’ 1866.—Idem, “On the Development and Migrations of the Entozoa,” ‘Brit. Assoc. Rep.,’ 1864, p. 116.—Date, W., ‘Lancet’ for Feb., 1872, p. 185.—Davaine, ‘Traité,’ l. c., 2nd edit., p. 211, and ‘Synops.,’ p. 95.—Dickinson, “Case of Epilepsy in Children relieved by the expulsion of Worms,” ‘Med. Times and Gaz.,’ Jan., 1863.—Dickson, R., art. “Anthelmintics,” rep. from the ‘Penny Cyclopædia,’ in Knight’s ‘Eng. Cyclop. Arts and Sci. Div.,’ vol. i (column 365), London, 1859.—Dreyfus, “Irritation of the Bladder from Ascarides,” from ‘Journ. de Med.,’ in ‘Lond. Med. Gaz.,’ 1847.—Elliotson, J., “A Lecture on Worms,” ‘Lond. Med. Gaz.,’ 1833.—Idem, “On Worms in the Intestinal Canal,” ‘Lancet,’ 1831.—Idem, “On a Case of Threadworms,” ‘Lancet,’ 1831.—Idem, “On Intestinal Worms,” ‘Lancet,’ 1830.—Heller, A., “Darmschmarotzer,” in von Ziemssen’s ‘Handbuch,’ Bd. vii, s. 632 (see also Anglo-American edit.), 1876.—Küchenmeister, l. c., Eng. edit., p. 356.—Ransom, in Reynolds’ ‘Dictionary of Medicine.’—Smith, A. (and others), ‘Lancet,’ April 29th, 1865, p. 468.—Stricker, W., in ‘Virchow’s Archiv,’ xxi, 1861, s. 360.—Tatham, ‘Lancet,’ April, 1867, p. 457; see also p. 519.—Vix, E., ‘Ueber Entozoen,’ &c., Berlin, 1860; see also “On the occurrence of Entozoa in the Insane, particularly with respect to the Oxyuris vermicularis;” brief notice (‘Allg. Zeitsch. f. Psychiatrie’) in Winslow’s ‘Journ. of Psycholog. Med.,’ vol. i, 2nd series, 1861, p. 158.—Zenker, ‘Verhandl. d. phys. med. Soc.,’ H. ii, Erlangen, 1870, s. 20; and in ‘Tageblatt der deutschen Naturforscherversammlung zu Dresden,’ 1868, s. 140 (also quoted freely by Leuckart, Davaine, and Heller).

Leptodera (Anguillula) stercoralis, Bavay.—In the summer of 1876 Dr Normand, of the French Marine, discovered this little entozoon in the fæcal discharges of soldiers who had been sent home invalided from Cochin-China. The patients in question were the victims of the so-called Cochin-China diarrhœa or dysentery. This disorder is endemic in character, and it had hitherto been regarded as consequent upon a variety of causes other than parasitic. Dr Normand’s discovery, as such, therefore takes equal rank with the analogous revelations made by Bilharz, Harley, Leuckart, Zenker, Weber, Lewis, and Bancroft, in respect of the particular helminthiases in man with which their names are severally associated (Bilharzia disease, Endemic hæmaturia, Cestode tuberculosis, Olulaniasis, Inter-tropical anæmia, Trichinosis, Lymphoid affections, Helminthoma, and so forth), and also, if I may be permitted to say so, with my own determinations in respect of a variety of endemics affecting animals (cestode and nematode epizoöty in the horse, the so-called grouse-disease, the pigeon-endemic due to lumbricoids, &c.).

The Leptodera stercoralis is a minute, smooth-bodied, simple, rhabditiform nematode, measuring when full grown 1/25″ in length, with an average breadth of 1/625 of an inch. The embryos at the time of their extrusion measure only 1/250″ in length, but by the time at which a rudimentary vesicle representing the uterus begins to form, the females have already attained a length of about 1/83″. The males and females are of nearly equal size. The transition from the embryonal state to the higher larval conditions is accompanied by a change of skin, after which the digestive and reproductive organs are gradually but rapidly formed and completed. These changes have been minutely traced and recorded by Professor Bavay, who also compares the entozoon with the genera Rhabditis and Leptodera, in either of which genera the worm might be placed. I have accordingly adopted the nomenclature suggested by Bavay.

Fig. 48.—Leptodera intestinalis. a, Adult female, and separate figure showing a portion of the body with the ova in sitû. The two outlined figures represent profile and front views of the tail, respectively. b, c, Eggs with imperfectly formed embryos. d, Larva. Highly magnified. After Bavay.

As happens in all the kindred helminthiases that are known to be dependent upon the presence of small worms, large numbers of Anguillules are necessary to produce injurious effects upon the bearer. Thus, the evacuations of the Cochin-China patients were found to contain such multitudes of the worms that their numbers could only be adequately estimated at so many hundreds of thousands passed in twenty-four hours. Of course they varied in quantity, not only in different patients, but in the same bearer, from day to day. They are to be found in every stage of growth and development, from that of the intra-ovular embryo and free embryonic state up to sexual maturity. They occupy all parts of the intestinal canal, from the stomach downwards, being also found in the pancreatic and biliary ducts, and likewise within the gall-bladder. According to Bavay, five days suffice under favorable circumstances for the complete maturation of the worm. This readily accounts for their occasional extreme abundance.

I am indebted to the courtesy of Dr le Roy de Méricourt for the original memoirs from which these brief abstracts are taken.

Leptodera intestinalis, Bavay.—This is a larger species, now and then found associated with the above, and, according to Bavay, “in infinitely less abundance.” This species was also discovered by Dr Normand, and has been carefully described by Bavay. Possibly the worm may afford us another curious instance of dimorphism. Be that as it may, it must be provisionally regarded as a distinct form. As its occurrence is by no means invariable, its rôle in relation to the Cochin-China diarrhœa must, as Davaine has likewise remarked, be regarded as of secondary importance. It is readily distinguished from A. stercoralis both in the adult and larval conditions. The full grown worm, although comparatively narrow, is more than twice as long as its congener; moreover, the larvæ, in place of possessing finely-pointed tails, have blunt or truncated caudal extremities. Converting M. Bavay’s millimetric measurements into fractions of the English inch, the average length of the mature worms will be about 1/11″, whilst their breadth does not exceed 1/757″ in diameter.

Bibliography (No. 32).—Bavay, “Sur l’Anguillule stercorale,” ‘Comptes Rendus,’ Oct., 1876, p. 694, also in ‘Ann. Nat. Hist.,’ vol. xviii, 4th series, p. 507, 1876, also noticed in the ‘Veterinarian,’ Jan., 1877, p. 19.—Idem, “Note sur l’Anguille intestinale,” ‘Archiv. de Méd. Nav.,’ July, 1877, p. 64, and in ‘Ann. Nat. Hist.,’ 1877, vol. xix, 4th series, p. 350.—Cobbold, T. S., “Parasites of Man,” in the ‘Midland Naturalist’ for January 1st, 1879.—Davaine, ‘Traité,’ l. c., 2nd edit., Supp., pp. 966–976, 1877.—Laveran, in ‘Gaz. Hebd. de Med.,’ Jan., 1877, p. 42.—Layet and Le Roy de Méricourt, in ‘Dict. Encycl. des Sci. Med.,’ 1875.—Libermann, in ‘Gaz. des Hôp.,’ March, 1877, p. 237, and in ‘La France Méd.,’ 1877, p. 165 (quoted by Davaine).—Méricourt (see Layet).—Normand, A., in ‘Comptes Rendus’ for July, 1876, p. 316, and Aug., 1876, p. 386.—Idem, in ‘Arch. de Méd. Navale,’ 1877, p. 35, and separately as ‘Mémoire sur la diarrhée dite de Cochinchine,’ Paris, 1877.—Idem, “Du rôle étiologique de l’Anguillule dans la diarrhée de Cochinchine,” in ‘Archives de Médecine Navale’ for September, 1878, pp. 214–224.

Ascaris mystax, Rudolphi.—This well-known helminth possesses aliform appendages, one on either side of the head. It is of a medium size, the male measuring 21/2″ and the female usually 31/2″ to 4″ in length. Both as regards the size of the alæ and the length of the body it varies in different hosts. Thus the variety infesting the dog has long been regarded as a distinct species (A. marginata), partly from the circumstance that the alæ are less conspicuous, and partly because the individuals are often longer and thicker. I possess one specimen from the dog measuring more than six inches in length. From like causes the Ascaris leptoptera and other varieties infesting the carnivora have been regarded as distinct species, but the worm also varies in one and the same host.

As remarked in my elementary treatise, the late Dr Bellingham, of St Vincent’s Hospital, Dublin, published in the 13th vol. of the ‘Annals of Natural History,’ an extended catalogue of Irish entozoa, and in this list he recorded the existence of a new round worm in man. He says of it:—“From the distinctness of the lateral membranes of the head I have given it the name of Ascaris alata.” The catalogue was constantly referred to by Dujardin, Diesing, and other systematists; but some of the continental helminthologists do not appear to have had access to Dr Bellingham’s more extended account of this parasite as given in the first volume of the ‘Dublin Medical Press,’ No. 7, Feb. 20th, 1839. I am led to this inference from the doubt which some have cast upon the very existence of the worm, although others, with more candour, supposed that Bellingham had only mistaken the species. Thus, Küchenmeister (‘Parasiten,’ s. 464, and in Lancaster’s edit., vol. ii, p. 100) says:—“The Ascaris alata, found in the small intestines of a man, is probably only a young individual of one of the long-known nematoda, if, indeed, it be a worm at all!” (The italics are mine.) This statement was reproduced by Hulme in his English edition of Moquin-Tandon’s ‘Elements of Medical Zoology,’ p. 341; and the French author himself evidently shared the doubt expressed by other people. Dujardin (‘Helminthes,’ p. 156) admitted the species, as also did Diesing (‘Systema Helminthum,’ p. 175), but the latter unluckily added the following very significant suggestion:—“An Ascaris lumbricoides capitis epidermide emphysematice inflata?”

Dr Leidy, of Philadelphia, admitted A. alata among his Entozoa hominis without comment (‘Smithsonian Contrib.’ for April, 1853), but Weinland, of Frankfort, in his list, prefixed a note of interrogation, observing also that it had been “once” found in Ireland (‘Essay on Tapeworms,’ p. 88). It is quite clear, therefore, that these authors did not believe that the Ascaris mystax was a human parasite. Those who doubtfully accepted Bellingham’s A. alata did so under the impression that whatever it was, it could not be regarded as the common Ascaris of the cat. In the new edition of Davaine’s ‘Traité,’ A. alata is, to my surprise, still retained as a separate species, and there is no mention of the occurrence of A. mystax in man. From what has recently been written by several continental helminthologists (Leuckart, Heller, and others), I rejoice to think that it is not necessary for me again to advance the really superabounding proofs that Bellingham’s A. alata was nothing more than A. mystax. It has at length been admitted by almost all who are competent to form an opinion, that the memoir originally communicated to the ‘Lancet,’ in 1863, and subsequently introduced into the text of my introductory work, finally settled the question of identity. It was through the donation of Dr Edwin Lankester and Mr Scattergood that I was enabled at the time to announce the third instance of the occurrence of this parasite in man, and since that date several other instances have been brought under public notice. Not less than seven cases have now been noticed in which this little lumbricoid of the cat and dog has been found in man. For one good human specimen I am indebted to Dr Morton. In the above list I include Heller’s specimen, and the one from Greenland sent by Steenstrup to Leuckart. According to Hering’s observations this worm grows with remarkable rapidity. Worms obtained from a puppy only six days old measured from 1/12″ to 1/6″ in length. In a twelve-day-old puppy they reached nearly an inch in length, and in a month the growth was up to four inches. Females only 11/2″ in length already contained eggs, and males only 3/4″ long had acquired their spicules. Three weeks therefore, would be amply sufficient for the completion of sexual maturity within the feline or canine host. We do not know, however, whether or not a temporary host is necessary for the larvæ prior to their introduction into the cat or dog. Hering thinks that a direct infection by the ova is sufficient; but he gives no proof of the truth of this hypothesis. “Leuckart (as quoted by Heller, l. c., s. 615) found numerous embryonal round worms in the stomach of a cat, 1/62″ in length, and in addition all the intermediate stages of growth up to the larger examples found in the small intestine. They remain in the stomach until they have attained a length of from 1/18″ to 1/12″ and then pass into the small intestine. When they have attained a length of nearly 1/8″ they cast their skins and change the tooth-like boring apparatus for the three characteristic semicircular lips. These observations on Ascaris mystax (adds Heller) render it probable that A. lumbricoides is also introduced into the human alimentary canal while still in the embryonal state or somewhat further advanced (und wohl auch grösse).” The subject will be found more fully discussed in my account of the large species further on. The cat’s worm possesses an historical interest, not only in connection with Bellingham’s original discovery, but also in respect of Nelson’s subsequent determinations as to the precise mode of impregnation in nematodes. The subject is too extended and too special to be dealt with here at any great length.

For several years after Nelson left the shores of England to spend a too short life in New Zealand, the points discussed in his ‘Edinburgh Thesis’ (and subsequently published in the ‘Philosophical Transactions’) formed the subject-matter of numerous memoirs contributed to the leading German scientific journals. Stated with brevity, it may be said that, according to Nelson, the essential act of impregnation occurs when the thimble-shaped spermatozoa of the male penetrate the unimpregnated or ovarian ovum. This, he maintained, could and did take place at any part of the surface of the unfertilised ovum, since the granular mass of which it was composed, though well defined, did not, at this period, possess a limiting—or true yolk—membrane. Professor Allen Thomson, in a series of papers (some contributed in the German language), supported Nelson’s views generally.

Fig. 49.—Germs and ova of Ascaris mystax. Nos. 1 to 3 magnified 330 diameters and Nos. 4 to 24 magnified 220 diameters. After Nelson.

Amongst Nelson’s chief opponents was Meissner, who demonstrated that the unimpregnated ova really possessed a delicate limiting membrane, and that consequently the action of the spermatozoa was restricted to that portion of the ovarian ovum which became exposed by rupture or separation from the rachis. This opening he termed the micropyle. The union of the sexual elements is quickly followed by a condensation of the yolk-granules, and by the disappearance of the hitherto centrally placed germinal vesicle. The ovum next assumes a distinctly oval shape, the true yolk-membrane and the external chorional envelope now becoming more and more differentiated, until the latter acquires a regularly tuberculated surface. Co-ordinating with these changes the granular yolk is seen transforming itself into a single large embryonal cell; after a time this cell divides and subdivides by the ordinary process of yolk-segmentation, until it is finally resolved into the condition of a short, stout, vermiform embryo. The egg having assumed its definitive oval shape, the intrachorional embryo remains coiled within the shell, and does not make its escape until the egg has passed from the body of the parent worm.

Into the question of the mode of formation of the ovarian ova, and also into that of the development of the spermatozoa, I do not enter. However unwillingly, I must, in this matter, be contented to refer to Professor Allen Thomson’s classical article ovum (quoted below), to Leuckart’s elaborate analysis (l. c., Bd. ii, s. 76–92), and also, especially, to the exhaustive memoir of Claparède, whose brilliant labors, like those of Henry Nelson, were too early terminated by death. Shortly after graduation Nelson suffered a virtually enforced banishment from his native land.

Bibliography (No. 33).—Bellingham, O. B., “On the Genus to which the Worms known as Ascarides belong,” ‘Dublin Journ.,’ vol. xiv, 1839.—Idem, “Catalogue of Irish Entozoa,” ‘Ann. of Nat. Hist.,’ vols. xiii and xiv, 1843–44; and in the first part of Charlesworth’s ‘Mag. of Nat. Hist.,’ vol. iv, 1840. See also the address by Dr E. D. Mapother on the “Lives and Writings of O’Ferrall and Bellingham,” in the ‘Dubl. Journ. of Med. Sci.,’ Nov., 1877, p. 471 et seq.Bischoff, ‘Widerlegung (u. s. w.),’ Giessen, 1853; quoted by Claparède, l. c. infra, p. 9.—Idem, ‘Bestätigung (u. s. w.),’ Giessen, 1864.—Idem, “Ueber Ei-und Samenbildung und Befruchtung bei Ascaris mystax,” Sieb. and Köll. ‘Zeitsch.,’ 1855, s. 377; also in S. and K. ‘Zeitsch.,’ 1856.—Bremser, ‘Icones helminth.,’ p. 23, tab. iv.—Claparède, E., “Ueber Eibildung und Befruchtung bei den Nematoden,” S. and K. ‘Zeitsch.,’ 1857, s. 106.—Idem, ‘De la formation et de la fécondation des œufs chez les vers Nématodes,’ Genève, 1859. See also ‘Ann. of Nat. Hist.,’ vol. i, 3rd series, 1858.—Cobbold, in ‘Proceed. of the Zoological Soc. of London,’ Nov., 1862.—Idem, ‘Brit. Assoc. Rep.,’ 1862.—Idem, “On the occurrence of Ascaris mystax in the Human Body,” with figures, ‘Lancet,’ Jan., 1863; and in the ‘Dublin Med. Press,’ Feb., 1863.—Idem, ‘Entozoa,’ chap. xi, p. 316, 1864.—Idem, ‘Worms,’ pp. 72 and 112, 1872.—Idem, in “Obituary Notice of Dr Henry Nelson,” ‘Med. Times and Gaz.,’ 1865 (?).—Davaine, ‘Traité,’ l. c., 1877.—Diesing, C. M., ‘Syst. Helm.,’ vol. ii, p. 180, 1850.—Dujardin (l. c., Bibl. No. 2), p. 162.—Frœlich, in ‘Naturf.,’ xxiv, s. 141 (Asc. felis).—Funke, O., ‘Lehrbuch (u. s. w.),’ 1857, s. 1299.—Gmelin, ‘Syst. Nat.,’ p. 3031.—Golze, ‘Naturg.,’ l. c., s. 79.—Gurlt, ‘Path. Anat.,’ s. 366.—Heller, A., “Darmschmarotzer,” in Von Ziemssen’s ‘Handbuch,’ Bd. vii, s. 361.—Idem, ‘Sitzungsb. d. Erlanger phys.-med. Soc.,’ 1872, s. 73.—Hering, “Ueber das Vorkommen und die Entwicklung der Ascaris mystax bei jungen Hunden,” quoted by Leuckart from ‘Würtemb. Naturw. Jahreshefte,’ 1873, s. 305–337.—Kölliker, in ‘Müller’s Archiv,’ 1843, s. 68 et seq.Leidy, ‘Proc. Acad. Phil.,’ viii, p. 50.—Leuckart, l. c., Bd. ii, s. 258.—Meissner, G., “Beobachtungen über das Eindringen der Samenelemente in den Dotter,” S. and K. ‘Zeitsch.,’ 1854, s. 208.—Morton, T., “Another Example of the Occurrence of A. mystax, from a Child of fourteen months old,” in a letter to the ‘Lancet,’ March 11th, 1865, p. 278.—Nelson, H., “On the Reproduction of Ascaris mystax,” ‘Proc. of the Royal Soc.,’ in ‘Philosoph. Trans.,’ and in ‘Med.-Chir. Rev.,’ 1051–52; also in ‘Froriep’s Tagsbericht.,’ 1852, s. 205–207.—Rudolphi, ‘Synops.,’ p. 42, 1819.—Schneider, “Ueber Bewegung an dem Samenkörperchen der Nematoden,” in ‘Monatsb. d. Berliner Akad.,’ 1856, s. 192.—Idem, ‘Monographie der Nematoden,’ Erste Abth., s. 38, und Dritte Abth., s. 263 (“Entwicklungsgeschichte”), 1866.—Siebold, ‘Vergleichende Anatomie,’ 1848, s. 153, and in Burnett’s edit., p. 125 et seq., 1854.—Thomson, A., art. “Ovum,” in ‘Todd’s Cyclop. of Anat. and Phys.,’ supp., 1859.—Idem, “Ueber die Samenkörperchen, die Eier und die Befruchtung der Ascaris mystax,” S. and K. ‘Zeitsch.,’ 1856, s. 425.—Idem, “Report of Glasgow Meeting” (‘Brit. Assoc. Rep.’), 1855, p. 158.

Ascaris maritima, Leuckart.—This is a well-marked species. Judging from the characters presented by the solitary, sexually-immature female which supplied Leuckart with his only means of diagnosis, this worm may be briefly described as a filariform nematode about 3/4″ in length and about 1/25″ in breadth. Although there are no cephalic aliform membranes, the cuticle immediately below the lips forms small and distinct projections, one on either side of the head (‘Die Mensch. Par.,’ Bd. ii, s. 877).

This entozoon was discovered by Dr Pfaff at Jacobshavn, near Godhavn, West Greenland, in April, 1865. Two years later he sent the specimen to Krabbe, who afterwards transmitted it to Leuckart. In the original communication addressed to the Copenhagen helminthologist, Dr Pfaff states that he procured the worm from amongst matters vomited by a child, and he incidentally observes that he had hitherto encountered only Bothriocephalus cordatus and Oxyuris vermicularis amongst Greenlanders. As to the source of infection, Prof. Leuckart not unnaturally refers to the similar conditions of existence shared by the human and carnivorous inhabitants of that country. It is well known that bears, polar-bears, seals, and walruses are largely infested by nematodes (Asc. transfuga, A. osculata, Ophiostoma dispar, &c.), but these various species are quite distinct from Dr Pfaff’s little “spulwurm.”

Ascaris lumbricoides, Linneus.—This common parasite was for a long while regarded as identical with the great lumbricoid of the horse, but the question has been finally settled by Schneider, who has shown that the human worm, although identical with Dujardin’s Ascaris suilla of the hog, is nevertheless quite distinct from the Ascaris megalocephala of solipeds. The large lumbricoid occasionally found in the ox belongs to the human worm. Our large human helminth resembles the common earth-worm in general appearance only. The males usually measure from four to six inches in length, and the females from ten to fourteen inches. Some have been reported up to seventeen or eighteen inches in length. The body is smooth, fusiform, and elastic, and marked by numerous fine transverse rings. It is attenuated towards either extremity, the anterior end terminating in a prominently three-lobed mouth The tail is bluntly pointed. The female is much shorter than the male, having a diameter of nearly a quarter of an inch. The male is supplied with a double spiculum, its tail being always more or less curved towards the central surface. The female reproductive orifice is situated above the centre of the body. According to Schneider, the tail supports from 138 to 150 caudal papillæ, that is, from 69 to 75 on either side of the median line. Below the anus the papillæ are regularly arranged in pairs, seven in number, the two uppermost pairs being double.

Notwithstanding the advantage which the size of this entozoon affords us in the matter of observation and experiment, we are yet ignorant as to the precise mode in which the young gain access to the human body. From what has been said respecting the quick growth of Ascaris mystax in the dog, and from what has been observed respecting the rapid growth of the so-called A. suilla in the hog, we know that the worm requires but a short time to pass from the larval to the sexual state. The view of Hering, Mosler, Davaine, and others, who suppose that these worms are reared in a direct manner by swallowing the ova, is, as Leuckart observed, not yet proved. We are not in full possession of the facts of larval development. It is true that Professor Heller’s interesting “find” has shown that when these worms first gain access to the human body their size is quite insignificant. At the post mortem of an imbecile, Heller discovered eighteen young worms, varying in size from about 1/9″ to 1/2″ in length (2·75 to 13 mm.). The sexes were indistinguishable. As a set-off against this, Leuckart’s repeated attempts to rear Ascaris lumbricoides and A. mystax by means of direct feeding-experiments with the eggs all failed. Thus, we are yet left in doubt as to the destiny of the larvæ during the period which elapses between the time of their escape from the egg and the time of their entry into the human body. So important is the question as to the mode of origination, growth, and subsequent development of the larvæ, that it may be well to trace, however briefly, what steps have been taken to clear up the matter. Leuckart obtained his negative results by the administration of ripe ova to dogs, rabbits, swine, and mice. The eggs of Ascaris lumbricoides have been kept alive by Dr Davaine for a period of more than five years. I have myself watched the development of their contents in fresh water through all the stages of yolk segmentation up to the stage of an imperfectly-organised, coiled, intra-chorional embryo, and have kept them in the latter condition for a period of three months. According to Davaine (‘Comptes Rendus,’ 1858, p. 1217), the fully-developed embryo is cylindrical, its length being, 1/100th of an inch. The mouth is not furnished with the three characteristic papillæ of the genus, and the tail terminates suddenly in a point. Davaine administered some of his five-year-old embryos to rats, and had the satisfaction of finding a few of these eggs in the rodent’s fæces, with their embryos still living, but striving to emerge. He also gave eggs to a cow, and introduced others into the stomachs of dogs in small linen-covered flasks. As a general result it may be said that the embryos escaped from their shells. Those eggs, however, in which the yolk-segmentation had not arrived at the early embryonal stage remained unaffected. According to Heller, the embryo of A. lumbricoides casts its first skin while still within the egg, and “a subsequent ecdysis probably completes its definitive form” (l. c., s. 615). So far back as 1853 Verloren reared coiled intra-chorional embryos in the eggs of Ascaris marginata within a period of fifteen days in distilled water. I also reared the embryos of this species in fresh water, and kept them alive for a period of nearly a year and a half, at the expiration of which time, and during the warm weather, some few of them succeeded in making their escape. According to Davaine, the eggs of many nematode species will readily retain their vitality though long exposed to dryness, but their yolk-contents will not go on developing during this period of exposure. As regards A. mystax, however, Heller remarks that whilst “the eggs have a great power of resisting external influences, their development is not arrested in spirits of wine, chromic acid, or oil of turpentine” (l. c., s. 631). In the case of Ascaris tetraptera of the mouse, embryonic formation goes on in spite of the absence of external moisture. Davaine has noticed the same thing in the oxyurides of rodents. Dryness does not even destroy the eggs of A. lumbricoides and Trichocephalus dispar. It would seem, in short, that the eggs of nematodes which normally take up their residence in cats, dogs, and in the carnivora which reside in arid regions, will develop embryos in the egg without external moisture. As before remarked, Davaine thinks it is not necessary that these nematode embryos should pass through any intermediary bearer, and he believes that they are often directly transferred to the stomach of their “hosts” whilst adhering in the form of an impalpable dust to the coats of their bearers, whence they are detached by the animal’s frequent habit of licking the fur. Davaine’s view has received some support from the observations and experiments of Unterberger with the eggs of Ascaris maculosa. This observer administered eggs of the worm to doves (whose fæces were free of eggs), and seventeen days after found ova in the fæces.

With the eggs of the Ascaris megalocephala of the horse I performed numerous experiments. I reared the embryos in simple fresh water, and found them during warm weather escaping before the expiration of five months. I also succeeded in rearing these larvæ in pond mud, noticing, at the same time, that after their escape from the shell they grew more or less rapidly up to a certain point, after which they ceased growing. The addition of horses’ dung to soft wet mud in one case, and of cows’ dung in another, neither appeared to advance nor retard the process of embryonal formation, so long as the embryos were enclosed in their shells. On the other hand, when I reared embryos in simple horse-dung purposely kept moist, they attained a higher degree of organisation than did those in wet mud or water. Having watched hundreds of these larvæ under varying conditions, I came to the conclusion that, after escape from the egg, their activity, growth, and strength was most marked when they occupied media which happened to be impure. Davaine experimented on cows, and Leuckart also experimented on horses, with the eggs of this worm without success. Leuckart also failed to rear the larvæ in intermediary hosts. Some eggs passed through the water-palmer unaltered.

These results, so far as they go, seem to be borne out by facts of a professional order. Thus, an instance has been brought under my notice where a considerable number of peasants and their children, dwelling in a parish in Yorkshire, were infested with this worm. There was, in short, a local endemic helminthiasis. Through the parish runs a stream which supplies the cottagers with all the water they employ for domestic purposes (washing, drinking, and so forth). Some of the peasants living by the side of the stream keep pigs, and the sewage from this source has been allowed to pass into the stream itself. Now, if Schneider’s determination as to the identity of the lumbricoid of man and the pig is correct (which I do not doubt), the explanation of the cause of the endemic becomes a very simple matter. But it does not explain all that we desire to know about the young worms. Either the freed embryos before they enter the human bearer accomplish further changes of form and growth in the sewage or impure water; or, what is far less probable, they pass into the bodies of intermediary hosts (such as insect-larvæ, Gammari, Entomostraca, &c.) to undergo the necessary changes. Practically, no doubt, it comes to the same thing in the end. Even if we suppose that the Ascaris suilla and A. lumbricoides are not identical species, still it is evident that any person discharging the eggs of lumbricoids in the vicinity of open waters becomes, by that fact, a source and centre of infection. To ensure an endemic it is probably only further necessary that the human inhabitants should employ the contaminated water for domestic purposes. But time and an increase of temperature must be allowed for the bringing about of those known and unknown larval changes that alike form the necessary antecedents of infection. In this connection I will only add, that if the present position of the question be such as I have here represented it to be, we see that Mosler was not far wrong when he suggested that “contamination of the drinking water with the eggs out of privies is to be blamed” as a source of infection. According to Heller, from whom I quote, Mosler actually demonstrated the presence of the eggs in water thus exposed. In like manner it becomes obvious that Davaine’s practical remark (although it was based on the assumption of a direct infection by the eggs), that filtration will probably be sufficient to prevent infection, loses nothing of its hygienic value.

The foregoing observations naturally lead one to the question of frequency and distribution. Davaine holds that the comparative infrequency of this parasite in Paris is due to the free use of the filter. In London, though not uncommon, the worm rarely occurs in great numbers in one bearer. Those cases in our hospitals, where considerable numbers have been present, have usually come up from suburban or country places. Heller states that these worms were found in 9·1 per cent. of post mortems conducted at Dresden, in 12 per cent. at Erlangen, and in 17 per cent. at Kiel. He quotes Huss as stating that no one is free from this worm in Finland. The prevalence of large round worms in warm countries generally is well known. Throughout India and the East they are extremely abundant, and the same may be said of the West Indies, Brazil, and the adjacent territories. Professor Dyce and others have remarked on the extreme prevalence of lumbrici in the Mauritius, but they are comparatively rare along the sea border. In all situations where there is an abundant fresh-water supply these parasites are particularly common, as in the lowlands of Holland and the lake districts of Sweden. The abundance of water is certainly not alone sufficient to explain the frequency of the parasite, seeing that the most important factor is that which rests upon the uncivilised habits of the rural population. What, therefore, it may be asked, can be the cause of immunity enjoyed by Icelanders in this respect? The answer is not apparent; nevertheless Krabbe and Finsen have testified to the fact that Iceland is the only country that is entirely free from Ascaris lumbricoides.

As remarked in my previous work the number of worms present in any human bearer is usually small, varying commonly from one to six or eight. Cases in which scores or hundreds have existed are comparatively rare. Küchenmeister mentions the case of one child who passed 103 examples, and of another child that harbored from 300 to 400 worms. Dr Gilli, of Turin, gives a case where 510 were passed by a child, and Cruveilhier estimated that over 1000 existed in an idiot girl, whose intestines he found crammed with them. A remarkable case has also been communicated to me by Dr Mackeith, of Sandhurst, Kent, who, by means of santonine, expelled from a little girl, five and a half years of age, 300 lumbrici; and I am likewise indebted to Dr Cooper Rose for notes of a case in which about thirty lumbrici were expelled, chiefly in consequence of the employment of this drug. The most interesting fact, however, in this case was that the child was only fifteen months old. In this case the symptoms were severe.

The proper habitat of the lumbricus is the upper and middle part of the small intestine. From this situation it often wanders into the stomach, and frequently gains access to the outer world, not only by the natural passages of the mouth, nostrils, and anus, but also, occasionally, in a more direct way, by perforating the intestinal and abdominal walls. Many cases are on record where lumbrici have passed into the abdominal cavity. In other instances they have lodged themselves within the abdominal viscera and pulmonary organs. When they find their way into the parietes of the abdomen and adjacent parts, they usually give rise to the formation of abscesses requiring surgical interference.

As regards the symptoms produced by lumbrici, these vary according to the situation they happen to occupy. The symptoms are also modified by age and temperament. In the stomach and intestines they give rise to colic and shooting pains about the abdomen, followed generally by dyspepsia, nasal itching, nausea, vomiting, and even diarrhœa. Occasionally death supervenes suddenly. A singular case of this kind (the particulars of which I only gathered from a local newspaper) occurred in a boy, thirteen years of age, at the County Gaol at Hertford, in 1873. From Dr Evans’s statement, made at the coroner’s inquest, the sole cause of death appeared to be due to pressure on the windpipe by a worm lodged in the gullet. Sometimes there is cerebral disturbance, attended with general restlessness and convulsive twitchings during sleep. Thus, Dr Woodman has recorded a serious case of convulsions arising from lumbricoid worms, in which, however, a cure was effected by expulsion of the worms. An anonymous writer in the ‘Medical Gazette’ records a case of epilepsy from this cause, whilst another writer in the same journal (1839) mentions an instance where two lumbrici and one tapeworm were associated in the production of similar phenomena. But a much more striking case is also given (anonymously) in the ‘Gazette’ for 1874 (p. 415), where a single lumbricus caused the bearer to be a lunatic for eight years. The victim suffered from cataleptic fits, which lasted for two or three weeks at a time. M. Petrequin, in his ‘Traité Pratique,’ records two cases of amaurosis in young girls produced by lumbrici. A fatal case is recorded by Petrenz, where 200 worms produced enteritis, and another fatal case is given by Roger from perforation (1848). Cases of perforation are also given by Young, by Blair (1861), by Mondière (1839), by Buchner (1851), by Sheppard (1861), and by Luschka (1854), the worms in this last-mentioned case occupying the cavity of the pleura. Cases of severe irritation affecting the genito-urinary organs are given by Dreyfus, Buckingham, and others; and one or two instances are reported where these worms have been discharged from several parts of the body (Neilson, 1833). I may add that the third fasciculus of a work illustrating the collection of morbid anatomy in the Army Medical Museum at Chatham gives a case of lumbrici occupying the biliary ducts and gall-bladder. I find, moreover, two additional cases of perforation of the small intestine, one of which appeared in the ‘London Medical Gazette’ (1827) and the other in the ‘Lancet’ (1836).

During the Franco-German war Dr Reginald Pierson, as he afterwards informed me, removed a lumbricus from an abscess formed in the abdominal parietes of a soldier. But amongst the most curious cases (illustrating the wandering habits of these parasites) are those severally described by Barwell (1857), Williams, Prichard, and the Messrs Stockbridge. In Barwell’s case an Ascaris was expelled from a child who had swallowed the brass “eye” of a lady’s dress. Through the circular loop of this eye, used as a toy, the Ascaris had partly thrust its body, and becoming thus strangulated, it probably perished before it was evacuated. In Prichard’s case (1859) one or two lumbrici had similarly trapped themselves in the eyes of buttons swallowed by the patient, and one worm, not contented with a single strangulation, had succeeded in passing its body through two buttons. In 1842 Mr T. G. Stockbridge gave a similar case, in which he, not inaptly, spoke of these “hooks and eyes” as constituting a new remedy or “worm-trap” for lumbricus, and singularly enough, a namesake (W. Stockbridge), in the succeeding year, also recorded a like instance of the “mechanical expulsion of worms” by metallic buttons. Again, a third correspondent in the ‘Boston Journal,’ under the initials A. M., spoke of an open-topped thimble as constituting another new “worm-trap,” whilst he gave a case of lumbrici penetrating “metallic suspensor buttons.” There is also the case reported by Williams, who, at a meeting of the Boston Society for Medical Improvement, exhibited “a lumbricus with a dress-hook attached” (1857). Lastly, another lumbricus, trapped in the same way, may be seen in the Museum of the Royal College of Surgeons at Edinburgh.

Owing to the presence of a peculiar irritating vapour which is given out by these lumbricoids, particularly when fresh, several observers have experienced curious symptoms. Thus, Miram on two occasions, when examining A. megalocephala, was attacked with sneezing, excessive secretion of tears, with swelling of the puncta lacrymalia, and Huber also experienced a troublesome itching of the hands and neck after examining specimens of A. lumbricoides. In like manner I have myself had watery suffusion of the eyes (when collecting the perivisceral fluid for Marcet’s analyses: see Bibliog.), and Bastian has given a detailed account of the serious effects which the poison produced upon him. In Bastian’s case even spirit specimens produced irritation. The attacks of catarrh and asthma were so persistent and severe that they lasted for six weeks at a time. So sensitive was Bastian to the lumbricoid-miasm that he could not even put on a coat that he had worn during his investigations without experiencing fresh attacks of sneezing and other catarrhal symptoms. The attacks became periodical, occurring between five and six in the morning, being accompanied by dyspnœa and a distressing spasmodic cough. Bastian, in short, was quite a martyr in the cause of nematode anatomy.

Bibliography (No. 34).—Abousson, L., “On the Presence of Worms (lumbrici) in the Air-passages,” from ‘Arch. Gén. de Méd.,’ in ‘Med.-Chir. Rev.,’ 1836.—(Anonymous), A. M., “Another New Worm-trap—an open-topped Thimble in the Nostril (also notice of metallic suspender buttons penetrated by Lumbrici),” ‘Bost. Med. and Surg. Journ.,’ vol. xxvii, p. 121, 1842–43; see also T. G. and W. Stockbridge.—(Anon.), “Lumbrici expelled by Bismuth,” ‘Bost. M. and S. Journ.’ (from ‘Gaz. des Hôp.,’ ‘Journ. des Connaiss. Méd.,’ and ‘Boletin del Inst.-Med.-Valenc.’), 1859.—(Anon.), “Case of one Tapeworm and two Lumbrici causing Epilepsy,” from ‘Bull. du Midi’ and ‘Gaz. Méd.,’ 1839.—(Anon.), “Case of Perforation of the Ileum by Ascarides,” from ‘Hufl. and Ossan’s Journ.,’ in the ‘Lancet,’ 1836.—(Anon.), “Case of Lumbrici in the Biliary the Ducts and Gall-bladder,” note and fig. in third fasc., illust. the Coll. of Morb. Anat. in the Army Med. Mus. at Chatham, 1838.—(Anon.), “A Lumbricus causing Catalepsy, with Fits lasting two or three weeks; Cure by Vomiting,” ‘Lond. Med. Gaz.,’ 1847, p. 415.—Archer, E., “On a Case of A. lumbricoides producing alarming symptoms,” ‘Lancet,’ 1857.—Barwell, “Case of Ascaris expelled by the swallowing of a foreign body,” ‘Lancet,’ 1857.—Bastian, H. C., “On the Anatomy and Physiology of the Nematoids, Parasitic and Free,” ‘Phil. Trans.,’ 1866, p. 545; for the account of his poison-symptoms, see footnote, p. 583.—Batterbury, R. L., “Jaundice due to the presence of Lumbrici,” ‘British Med. Journ.,’ Nov., 1878, p. 721.—Bigelow, H., “Worm in an Abscess,” ‘Bost. Med. and Surg. Journ.,’ vol. xxxiii, p. 486, 1836.—Blatchley, C. C., “Two Cases of A. lumbricoides, attended with Abscesses, followed by large purulent discharges, and Worms therein,” ‘New York Med. and Phys. Journ.,’ vol. i, new series, p. 209, 1829.—Bonfils, E., “Lesions and Path. Phenomena caused by Lumbrici in the Biliary Ducts,” from ‘Arch. Gén.,’ in ‘Brit. and For. Med.-Chir. Rev.,’ 1858, and in ‘Amer. Journ. of Med. Sci.,’ vol. xxxvii, 1859.—Bradford, J. T., “Singular Case of Worms (Lumbrici),” ‘Bost. Med. and Surg. Journ.,’ vol. xxviii, 1843.—Brigham, A., “Worms in the Bladder simulating ‘Stone,’” ‘Amer. Journ. Med. Sci.,’ 1837; ‘Med.-Chir. Rev.,’ 1837; ‘Quart. Journ. Calcutta Med. and Phys. Soc.,’ vol. ii, p. 132, 1838.—Buchner, “On the Perforation of the Intestinal Canal by Worms (with ref. to two cases),” from ‘Med. Zeitung,’ 1850, in ‘Med.-Chir. Rev.,’ 1851.—Calderwood, “Treatment,” ‘Brit. Med. Journ.,’ Jan. 30, 1875.—Chapman, N., “Case of 68 Ascarides causing Pulmonary Disease,” in his ‘Dis. of the Thoracic and Abd. Viscera,’ p. 263, and in ‘Med.-Chir. Rev.,’ 1845.—Chiaje, Delle-, in ‘Rend. dell’ Accad. di Napoli,’ 1846 (“Anat.,” p. 403).—Church, J., “On A. lumbricoides,” ‘Mem. Med. Soc. Lond.,’ vol. ii, 1789.—Claparède (l. c., Bibl. No. 33, for development).—Clark, P., “Discharge of a Lumbricus through the Male Urethra,” ‘New York Journ. Med.,’ 1844, rep. in ‘Lancet,’ 1844, and in ‘Edin. M. and S. Journ.,’ vol. lxiv, 1845.—Cloquet, ‘Anat. des vers Intest.,’ 1824.—Cobbold, “On Sewage and Parasites, especially in relation to the Dispersion and Vitality of the Germs of Entozoa,” ‘Med. Times and Gaz.,’ Feb. 25, 1871, p. 215.—Idem, ‘Entoz.,’ p. 302–315.—Idem, ‘Worms,’ lect. xvi, p. 3.—Idem, art. “Ascaridæ,” in ‘Maunder’s Treasury,’ 1862.—Colvan, J., “Case in which Eleven Round Worms of the species A. lumbricoides were removed by Anthelmintics,” ‘Dubl. Med. Press,’ vol. xxvi, p. 211, 1851.—Cutler, J. H., “Death by Worms (a large Lumbricus being found in the Wind-pipe),” ‘Bost. Med. and Surg. Journ.,’ vol. lxvi, p. 392, 1862.—Czermak, in ‘Sitz. d. k. Akad. d. Wissensch.,’ 1852 (“Anat.,” s. 755).—Davaine, in his ‘Traité,’ l. c., 2nd edit., syn. xcvii, and p. 122–235 (with details of forty-five cases); see also his memoir “On the Development and Propagation of the Trichoceph. dispar and A. lumbricoides,” from ‘Comptes Rendus,’ in ‘Ann. Nat. Hist.,’ vol. ii, 3rd series, 1858; also in the ‘Journ. of Pract. Med. and Surg.,’ Eng. edit., vol. i, 1858, and in the ‘Veterinarian,’ vol. xxxii, p. 700, 1859, from ‘Proc. of Acad. des Sci.,’ in ‘Bost. M. and S. Journ.,’ vol. lix, p. 157, 1858–59.—Idem, art. “Entozoaires,” in ‘Dict. de Méd. et Chir. prat.’—David, J. B., “Cases of Perforation of the Intestines by Worms,” from ‘Gaz. Méd. de Paris,’ in ‘Dubl. Med. Press,’ 1840, p. 223.—Diesing, ‘Syst. Helm.,’ ii, p. 166; and in ‘Revis der Nemat.,’ l. c., s. 660.—Douglas, J., “Worms (Lumbrici) evacuated at an Ulcer of the Groin,” ‘Med. Ess. and Obs.,’ vol. i, 2nd edit. (vol. i, 5th edit., p. 179), p. 222, 1737.—Dowler, B., “Case of Worms in the Urinary Bladder,” from ‘New Orl. M. and S. Journ.,’ in ‘New York Journ. Med.,’ new series, vol. xiv, 1855.—Dubini, ‘Entozoografia umana’ (“Anat.,” p. 148).—Dupuytren, “Lumbricus passed by the Urethra,” from “Clin. Lect.,” in ‘Lond. Med. and Surg. Journ.,’ 1846, p. 14.—Dyce, R., “On Lumbrici and the Causes of their Prevalence in the Mauritius,” ‘Lond. Med. Gaz.,’ 1834.—Evans, T., “Lumbricus causing Death,” rep. of coroner’s inquest in the ‘Herts Advertiser and St Alban’s Times’ for Feb. 8, 1873.—Gervais (and Van Beneden), ‘Zool. Med.,’ ii, p. 118.—Gilli, “Account of a Case in which 510 Worms (Lumbrici) were voided by a Child,” from ‘Giorn. d. Scienze Med. di Torino,’ in ‘Med.-Chir. Rev.,’ 1843.—Goopta, G. D. D., “On Suicide and Lumbrici,” ‘Ind. Med. Gaz.,’ July, 1874, and ‘Lond. Med. Rec.,’ Aug., 1874, p. 502.—Heller, A., “Darmschmarotzer,” in Von Ziemssen’s ‘Handb.,’ s. 612–631.—Holland, G. C., “A peculiar Case of Nervous Disease or Derangement of the Nervous System (associated with A. lumbricoides),” ‘Edin. M. and S. Journ.,’ vol. lxiii, 1845.—Howall, “Abscess of the Groin, with discharge of Lumbrici,” ‘Lond. Med. Gaz.,’ 1845, and ‘Edin. M. and S. Journ.,’ 1846, p. 241.—Johnson, W. G., “Case of forty Lumbrici in a Boy who died with Traumatic Tetanus,” “Rep. of South Mid. Br. of Brit. Med. Assoc.,” in ‘Brit. Med. Journ.,’ 1858.—Kell, “Perforation of the Intestines by a Worm,” ‘Lond. Med. Gaz.,’ 1828.—Kilgour, T., “Case in which Worms in the Nose, productive of alarming Symptoms, were removed by the Use of Tobacco,” ‘Med. Comment.,’ vol. viii, 1783.—Kirkland, “Case of Lumbricus in an Abscess of the Liver,” rep. in his book, entitled ‘An Enquiry,’ vol. ii, p. 186 (quoted by Richter and Davaine), London, 1786.—Küchenmeister, ‘Manual,’ Eng. edit., p. 410–427.—Leidy, J., ‘Proc. Acad. Phil.,’ 1856, p. 50.—Lente, F. D., “Lumbricus in the Stomach causing Dyspnœa,” in his “Rep. of Cases occurring in the New York Hosp.,” in ‘New York Journ. of Med.,’ vol. v, new series, p. 167, 1850.—Lettsom, “Case of Lumbricus evacuated from an Abdominal Abscess,” ‘Trans. Med. Soc. Lond.,’ and ‘Lond. Med. Repos.,’ 1817.—Leuckart, l. c., s. 152–258.—Lieberkühn, in ‘Miller’s Arch.’ (“Anat. of A. suilla”), 1855, s. 331.—Luschka, “Case of Lumbrici within the Pleura,” from ‘Virch. Arch.,’ in ‘Med.-Chir. Rev.,’ 1854.—Lowne, B. T., “The Anatomy of the Round Worm,” ‘Trans. Roy. Micr. Soc.,’ 1871, p. 55.—Maesson, “On a Worm found in the Bubo of a Woman 36 years of age;” see ‘Entozoa and Parasites, being a ref. to numerous papers;’ from “Valentin’s Repertorium,” in ‘Month. Journ. of Med. Sci.,’ vol. ii, p. 559, 1842; also in ‘Micr. Journ. and Struct. Rec.,’ p. 85, 1842.—Marcet, W., “Chemical Exam. of the Fluid from the Peritoneal Cavity of A. megalocephala,” ‘Proc. Roy. Soc.,’ 1862, No. 72, p. 69.—Martin, D. T., “Large number of Worms (140 examples of A. lumbricoides) discharged from a Child five years old,” rep. from the “Stethoscope,” in ‘Bost. Med. and Surg. Journ.,’ vol. xliv, p. 301, 1851.—Mattei, R., “On a Case of two Lumbricoid Worms, which had penetrated during life into the liver, and were demonstrated by Prof. G. Pelizzari to his pupils in the Sch. of Path. Anat. of Florence,” from ‘Gaz. Med. Ital. Toscana,’ in ‘Dubl. Quart. Journ.,’ vol. xxiv, 1857.—Michel, “Case of Epilepsy in a Girl ten years of age, caused by Lumbrici,” from ‘Journ. des Connaiss. Méd.,’ in ‘Amer. Journ. of Med. Sci.,’ vol. vi, p. 451, 1843.—M’Laggan, J., “Gangrenous Sore from a large Worm in the Parietes of the Abdomen,” ‘Med. Comment.,’ vol. ii, 1774, p. 80.—Molin, in ‘Sitzungsb. d. k. Akad.,’ 1859, s. 23.—Mondière, “On Perforation by Worms (three cases),” from ‘L’Expérience,’ in ‘Med.-Chir. Rev.,’ 1839.—Moore, E. D., “Example of A. lumbr. ejected by the Mouth,” ‘Prov. Med. and Surg. Journ.,’ 1852.—Morgan, J., “Case of Perforation of the Stomach, probably by a (Lumbricus) Worm,” ‘Lancet,’ 1836.—Morland, W. W., “Ejection of numerous Lumbrici from the Mouth, impaction of the small intestine with Lumbrici, (of which 365 were removed post mortem),” ‘Bost. M. and S. Journ.,’ vol. lvi, 1857.—Idem., an “A. lumbr. of unusual size (over 17 inches long),” ‘Rep. of Bost. Soc. for Improv.,’ in ‘Bost. M. and S. Journ.,’ vol. lviii, p. 62, 1858.—Neilson, “Discharge of Worms from various parts of the Body,” ‘Med.-Chir. Rev.,’ and ‘Lond. Med. Gaz.,’ 1833.—Omond, R., “Case of Lumbricus attended with Hæmoptysis,” ‘Edin. Med. Journ.,’ 1856.—Owen, R., art. “Entozoa,” l. c.—Padley, G., “Jaundice and Lumbrici,” ‘British Med. Journ.,’ Dec. 14, 1878, p. 877.—Petrenz, “Case of fatal Enteritis produced by (200) Lumbrici,” from ‘Clarus and Radius’ Beitr. zur Pract. Heilk.,’ in ‘Dubl. Journ.,’ vol. xi, 1837; also in ‘Lond. Med. Gaz.,’ 1837.—Playfair, “Case of Lumbricus (69 specimens) cured by the Mudar,” ‘Calc. Med. and Phys. Soc. Trans.,’ vol. ii, p. 407, 1826.—Pomeroy, C. G., “Escape of Worms (17 Lumbrici) from the Navel of a Child,” ‘Bost. M. and S. Journ.,’ vol. xxi, 1840.—Prichard, A., “Case of Lumbricus,” ‘Rep. of East York and North Lincoln Br. of Brit. Med. Assoc.,’ in ‘Brit. Med. Journ.,’ 1859.—Royer, “Case of Intestinal Perforation by a Lumbricus,” report in ‘Lancet,’ 1856.—Rumsey, N., “Cases of Lumbricus and Tænia associated with Hæmoptysis,” ‘Med.-Chir. Trans.,’ 1818.—Sandwith, H., “Remarks on Worms in the Peritoneal Cavity, with a case,” ‘Brit. Med. Journ.,’ 1861.—Schleifer, “Case of a Deaf and Dumb Child restored after the discharge of Worms (87 Lumbrici and innumerable Oxyurides),” from ‘Œsterr. Med. Wochensch.,’ in ‘Amer. Journ. of Med. Sci.,’ vol. viii, p. 473, 1844.—Schneider, A., ‘Monog. der Nemat.,’ s. 36.—Idem, “On the Nervous System of Nematoda,” from the German by Busk, ‘Quart. Journ. Micr. Sci.,’ 1863.—Schultze, “Case of Stuttering occasioned by Worms,” from ‘Med. Zeit.,’ in ‘Med.-Chir. Rev.,’ 1837.—Sheppard, “Case of A. lumbr. extracted from an Abdominal Abscess,” ‘Brit. Med. Journ.,’ 1861.—Smith, J. N., “Thirty-nine Specimens of Ascaris lumbricoides in a Child,” ‘Bost. M. and S. Journ.,’ 1856.—Spalding, P., “Case of Worms (100 Lumbrici),” ibid., 1839.—Stockbridge, T. G., “Worm-trap (hooks and eyes), a New Remedy,” ibid., vol. xxvii, p. 73, 1842–43; see also Anon., A. M.—Stockbridge, W., “Mechanical Expulsion of Worms (by metallic buttons),” ibid., vol. xxviii, p. 419, 1843.—Van Beneden, ‘Animal Parasites,’ l. c., p. 95; see also Gervais.—Villemin, “Case of Death from Worms (about 18 specimens of A. lumbr.),” from ‘L’Union Méd.,’ in the ‘Lancet,’ and rep. in ‘Dubl. Med. Press,’ vol. xxxv, p. 327, 1856.—Weinland, in his ‘Essay,’ l. c., p. 88, and in ‘Troschel’s Arch.,’ 1859, s. 283.—Welsh, T., “Curious Facts respecting (symptoms produced by) Worms (A. lumbricoides),” art. ix in the ‘Med. Papers communicated to the Massachus. Med. Soc.,’ vol. i, p. 87, 1790.—Wendelboe, “Case of discharge of Worms (Ascarides?) through the Skin,” from ‘Rep. of Roy. Soc. Copenhagen,’ in ‘Lancet,’ 1836; see also Neilson.—Williams, H. W., “Exhibition of a Lumbricus with a dress-hook attached,” ‘Rep. of Bost. Soc. for Med. Improv.,’ in ‘Bost. M. and S. Journ.,’ vol. lvi, p. 163, 1857.—Wilson, J., “On the prevalence of Lumbrici in China,” in his ‘Med. Notes on China,’ London, 1846.—Woodman, W. B., “Case of Convulsions, &c., arising from Lumbricoid Worms,” ‘Med. Times and Gaz.,’ 1863.—Young, W., “Cases in which Lumbrici were evacuated by Ulceration through the Parietes of the Abdomen,” ‘Lond. Med. Gaz.,’ from ‘Glasgow Med. Journ.,’ 1828; rep. in ‘Lond. Med. and Surg. Journ.,’ vol. i, p. 564, 1828.