Malt Extract vs. Sugar.

Having determined the relative diastatic values of the malt extracts, it was desirable to determine their values as sugar producers in bread-making; and to see if the saccharine material in bread could not be supplied cheaper by means of malt extract than by the use of granulated sugar, as is commonly done. Five different breads were made, all conditions and ingredients being kept as nearly similar as possible, except the kind and quantity of saccharine material used. After the breads were made and dried the percentages of reducing sugars were determined. The tabulated results follow:

Grams
Flour.
Saccharine Material.P’c’t’ge
Sugar
Pound.
No. 1 80020 gm. cane sugar5.37
No. 2 800None3.64
No. 3 8008 gm. malt extract No. 56.00
No. 4 8008 gm. malt extract No. 15.68
No. 5 8001 gm. malt extract No. 5 and 30 gm. cooked flour5.27

The percentages found are calculated on the dry bread. The results reveal several interesting and significant facts. The eight grams of the lowest diastatic extract (activity 8.56) produced more sugar in the bread than the twenty grams of cane sugar. It is also evident that the lowest diastatic extract produced nearly as much sugar as the highest. The ratio of their activities is 8.56 to 20.13, while the ratio of the percentages of sugar produced is only 5.68 to 6.00. We might expect that the extract with an activity of 20.13 would produce more sugar than the one having an activity of only 8.56, but the results show that it did not. The explanation seems to be that both have an activity sufficiently high to convert into sugar and dextrin all the starch that is freed from the cellulose by having the cell walls broken, and neither attacks the starch granules that are still enclosed by cellulose.

It is a quite significant fact, too, that the one gram Of malt extract No. 5, together with thirty grams cooked flour, produced nearly as much sugar in the bread as the twenty grams of granulated sugar. This bread, No. 5, in addition to having the sugar supplied in the cheapest way, had its moisture and freshness retained longer than the other breads.

The bread having no saccharine material added showed on analysis to have 3.64 per cent. of reducing sugar. Some of this sugar was in the flour, but the larger part of it was formed by the enzymes in the flour during the fermentation period and the baking of the bread.

Knowing the percentage of sugar and the weight of dry bread produced from the 800 grams of flour, I calculated the amount of sugar in the total quantity of bread produced in each baking. Then by deducting the amount of sugar in bread No. 2, which had no sugar added, from the amount in the other breads, the total amount of sugar produced by the malt extract was obtained. In this way it was found that the malt extract No. 5 produced 2.65 times its weight of sugar when added directly to the dough as is commonly done, and that it yielded 14.67 times its own weight of sugar when a portion of the flour was cooked, as in experiment 5; or it produced 5.5 times as much sugar when added to flour, the starch of which had been gelatinized by cooking, as it did when added to the raw flour. The cooked flour was cooled to 120 degrees F. and then the malt extract added. The results show that while malt extract produces considerable sugar when added directly to the raw flour, it produces much more sugar when a portion of the flour is cooked.

Now, one might suppose that the heat of the oven would certainly gelatinize a portion of the starch, and thus aid the diastase in the conversion of the starch into sugar, and avoid the necessity of cooking a portion of the flour. But when we consider the fact that the starch does not begin to gelatinize until the temperature is raised to 152 degrees, which is already about 30 degrees above the most favorable temperature for the activity of the diastase, and the fact that the diastase is killed at a temperature of about 175 degrees F., we can readily see why the gelatinization of starch in the oven is of little assistance to the diastase in the conversion of starch into sugar.

This also throws some light upon the fact that the low diastatic extract produced approximately as much sugar as the one having the high activity. As stated above, both of the extracts, when used to the extent of one per cent., figured on the flour, have sufficient diastase to convert the broken starch granules into sugar, and the higher activity then can be of value only in the conversion of starch into sugar after gelatinization of a portion of the starch by the heat of the oven, and then only while the temperature rises from 152 degrees F., at which temperature the starch is gelatinized, until it reaches about 175 degrees, when the diastase is killed, and under very unfavorable conditions, for the temperature is far above the most favorable activity of the diastase.

While the high diastatic extract seems to yield but little more sugar than the one of low activity when added directly to the raw flour, it has a decided advantage when a portion of the flour is cooked, for then the amounts of sugar produced by different extracts will bear much more nearly the same ratios to each other as the activities of the extracts.

Besides supplying saccharine material in the bread, malt extract has other advantages. In addition to the sugar it contains mineral salts, peptones, and other protein materials which stimulate fermentation. These proteins, besides being a source of nitrogenous food for the yeast, act upon the proteins of the flour, making them assimilable by the yeast.

In addition to the amylolytic ferment, the diastase, which converts starch into sugar, malt extract contains proteolytic ferments which act upon the gluten much as the ferments of the yeast. These ferments aid the yeast in preparing the gluten, and hence a smaller quantity of yeast can be used when malt extract takes the place of granulated sugar. In other words, the dough matures quicker, owing to the presence of these ferments in the malt extract. While the extracts with the higher diastatic activity produce only a little more sugar than the lower diastatic extracts, they act upon the gluten much more vigorously, and consequently the dough matures much sooner when a high diastatic malt is used. This latter, then, is better suited to hard flours, while the former can be used to good advantage with weak flours.

The dextrin formed by the diastase gives a very desirable color to the crust of the bread, which is often lacking when no malt extract is used. In addition to these advantages, malt extract produces an agreeable flavor, and this is, perhaps, one of the best arguments for its use.

From the table above it is evident that a given weight of malt extract goes much farther toward producing sugar in bread than does the same weight of cane sugar, but there has been nothing said of prices. By a few calculations I think we can show, approximately, how much the baker can save in dollars and cents by using malt extract in place of cane sugar. We will assume the flour to be worth $4.50 per barrel or 2.29 cents per pound, cane sugar 5 cents per pound and malt extract 7 cents per pound. As a basis of comparison we will take 100 pounds of cane sugar, which at 5 cents per pound will be worth $5.00. As stated above, one part of malt extract will produce 2.65 times its weight of sugar when added to the dough directly and 14.67 times its weight of sugar when a portion of the flour is cooked. Then it will take 100 divided by 2.65 equals 37.7 pounds of malt extract to produce 100 pounds of sugar by the first method. Since malt extract contains sixty per cent. or more of sugar, the 37.7 pounds would supply 22.6 pounds of sugar and there would be used up 77.4 pounds of starch from the flour to make up the 100 pounds of flour. The 77.4 pounds of flour at 2.29 cents per pound would cost $1.77 and the 37.7 pounds malt extract at 7 cents per pound would cost $2.64, making a total of $4.41 for the 100 pounds of sugar, against $5.00, the cost of the cane sugar.

By the second method, in which a portion of the flour was cooked, it would take 100 divided by 14.67 equals 6.81 pounds of malt extract to produce 100 pounds of sugar. This would contain 4.1 pounds of sugar and there would be used up 95.9 pounds of starch from the flour to make up the 100 pounds of sugar. The cost of the 6.81 pounds malt extract would be $0.50 and the cost of the flour $2.20, a total of $2.70. Then there would be a saving of $5.00 minus 4.41 equals $0.59 by the first method and $5.00 minus $2.70 equals $2.30 by the second method on every hundred pounds of cane sugar used. So far we have considered only the saccharine material. The cane sugar, of course, contains nothing but saccharine material. The malt extract, however, in addition to the sugar, contains about seven per cent. of protein material, which has not been mentioned, and which is an item of considerable importance, and also mineral salts which stimulate yeast fermentation. Besides, the malt extract gives a color to the crust of the bread and a flavor which is quite desirable. When the starch of the flour is converted into sugar, the gluten remains and makes the bread that much richer in protein, which is one of the essential constituents of white bread; also it absorbs several times its weight of water and thus increases the yield of the bread.

It is quite evident that there are many points to be considered in connection with the use of malt extract in bread baking. Most of the evidences, however, seem to indicate that it can be used to good advantage. The principle that “If a little is good, more is better,” will not apply, however. Two pounds to the barrel may give splendid results, while four pounds to the barrel may cause a miserable, soggy loaf of bread. The amounts that can be successfully used depend upon the strength of the flour and the diastatic activity of the extract. With a weak flour one must use low diastatic extracts, while with strong flours one may use larger quantities of extracts with a greater diastatic power.


COTTON SEED OIL IN BREAD-MAKING
BY DAVID CHIDLOW

Cotton seed oil has received so much attention from bread makers in the past few years that it would seem there was nothing left unsaid regarding its advantages in bread-making; but thoughtful bakers will be alert to learn anything new regarding the properties of oil for shortening, which will make them better bakers by using shortenings, with an understanding of their properties in bread-making.