PREPARATION OF THE SUGAR SOLUTION FOR POLARIZATION.

If the sample is not entirely uniform it must be thoroughly mixed before weighing out, after all the lumps are broken up, best with a mortar and pestle. Then 26.048 grammes are weighed out on the balance in the tared German silver dish furnished for this purpose. Care must be taken that the operations of mixing and weighing out are not unduly prolonged, otherwise the sample may easily suffer considerable loss of moisture, especially in a warm room. The portion of sugar weighed out is washed by means of a jet from a wash bottle into a 100 c.c. flask, the dish being well rinsed three or four times and the rinsings added to the contents of the flask. The water used must be either distilled water or clear water which has been found to have no optical activity. After the dish has been thoroughly rinsed, enough water is added to bring the contents of the flask to about 80 c.c. and it is gently rotated until all the sugar has dissolved. The flask should be held by the neck with the thumb and finger, and the bulb not handled during this operation. Care must be taken that no particle of the sugar or solution is lost. To determine if all the sugar is dissolved, the flask is held above the level of the eye, in which position any undissolved crystals can be easily seen at the bottom. The character of the solution is now observed. If it be colorless or of a very light straw color, and not opalescent, so that it will give a clear transparent liquid on filtration through paper, the volume is made up directly with water to the 100 c.c. mark on the flask. Most sugar solutions, however, will require the addition of a clarifying or decolorizing agent in order to render them sufficiently clear and colorless to polarize. In such case, before making up to the mark, a saturated solution of subacetate of lead is added.

The quantity of this agent required will vary according to the quality of the sugar; for sugar which has been grained in the strike pan and washed in the centrifugals, from 3 to 15 drops will be required; for sugar grained in the strike pan but not well washed in the centrifugals, that is, sugar intended for refining purposes, from 15 to 30 drops will be required; for sugar not grained in the strike pan, that is, "wagon" or "string sugar," "second sugar," etc., from 1 to 3 c.c. will be required. After adding the solution of subacetate of lead the flask must be gently shaken, so as to mix it with the sugar solution. If the proper amount has been added, the precipitate will usually subside rapidly, but if not, the operator may judge of the completeness of the precipitation by holding the flask above the level of the eye and allowing an additional drop of subacetate of lead to flow down the side of the flask into the solution; if this drop leaves a clear track along the glass through the solution it indicates that the precipitation is complete; if, on the other hand, all traces of the drop are lost on entering the solution, it indicates that an additional small quantity of the subacetate of lead is required. The operator must learn by experience the point where the addition should cease; a decided excess of subacetate of lead solution should never be used.

The use of subacetate of lead should, in all cases, be followed by the addition of "alumina cream" (aluminic hydrate suspended in water)[2] in about double the volume of the subacetate solution used, for the purpose of completing the clarification, precipitating excess of lead, and facilitating filtration. In many cases of high grade sugars, especially beet sugars, the use of alumina alone will be sufficient for clarification without the previous addition of subacetate of lead.

The solution is now made up to the mark by the addition of distilled water in the following manner. The flask, grasped by the neck between the thumb and finger, is held before the operator in an upright position, so that the mark is at the level of the eye, and distilled water is added drop by drop from a siphon bottle or wash bottle, until the lowest point of the curve or meniscus formed by the surface of the liquid just touches the mark. If bubbles hinder the operation, they may be broken up by adding a single drop of ether, or a spray from an ether atomizer, before making up to the mark. The mouth of the flask is now tightly closed with the thumb, and the contents of the flask are thoroughly mixed by turning and shaking. The entire solution is now poured upon the filter, using for this purpose a funnel large enough to contain all the 100 c.c. at once, and a watch glass is placed over the funnel during filtration to prevent a concentration of the solution by evaporation.

The funnel and vessel used to receive the filtrate must be perfectly dry. The first portion of the filtrate, about 20 to 30 c.c., should be rejected entirely, as its concentration may be affected by a previous hygroscopic moisture content of the filter paper. It may also be necessary to return subsequent portions to the filter until the liquid passes through perfectly clear.

If a satisfactory clarification has not been obtained, the entire operation must be repeated, since only with solutions that are entirely clear and bright can accurate polarimetric observations be made.

When a sufficient quantity of the clear liquid has passed through the filter, the 200 mm. observation tube is filled with it. The 100 mm. tube should never be used except in rare cases, when notwithstanding all the means used to effect the proper decolorization of the solution, it is still too dark to polarize in the 200 mm. tube. In such cases the shorter tube may be used, and its reading multiplied by two. The zero deviation must then be determined and applied to the product. This will give the reading which would have been obtained if a 200 mm. tube could have been used, and it only remains to apply the correction determined by the use of the control plate as previously described.

Example:

Solution reads in 100 mm. tube47.0
Multiplied by 22.0
——
Product94.0
Zero reads plus 0.30.3
——
Solution would read in 200 mm. tube93.7
Reading of control plate90.4
Sugar value of control plate90.5
——
Instrument too low by0.1
Add 0.1 to93.7
——
Correct polarization of solution93.8

Before filling the tube it must either be thoroughly dried by pushing a plug of filter paper through it, or it must be rinsed several times with the solution itself. The cover glasses must also be clean and dry, and without serious defects or scratches. Unnecessary warming of the tube by the hand during filling should be avoided; it is closed at one end with the screw cap and cover glass, and grasped by the other end with the thumb and finger. The solution is poured into it until its curved surface projects slightly above the opening, the air bubbles allowed time to rise, and the cover glass pushed horizontally over the end of the tube in such a manner that the excess of liquid is carried over the side, leaving the cover glass exactly closing the tube with no air bubbles beneath it, and with no portion of the liquid upon its upper surface. If this result is not attained, the operation must be repeated, the cover glass being rubbed clean and dry, and the solution again brought up over the end by adding a few more drops. The cover glass being in position, the tube is closed by screwing on the cap. The greatest care must be observed in screwing down the caps that they do not press too tightly upon the cover glasses; by such pressure the glasses themselves may become optically active, and cause erroneous readings when placed in the instrument. It should therefore be ascertained that the rubber washers are in position over the cover glasses, and the caps should be screwed on lightly. It must also be remembered that a cover glass, once compressed, may part with its acquired optical activity very slowly, and some time must be allowed to elapse before it is used again.

The polariscopic reading may now be taken, an observation on the 90° control plate having been made immediately before as previously described. Then without altering the position of the instrument relative to the light, or changing the character of the latter in any way, the tube filled with the sugar solution is substituted for the control plate. The telescope is adjusted, if necessary, so as to give a sharply defined field, which must appear round and clear. (This condition must be fulfilled before the observation is performed, as it is essential to accuracy.) The milled head is turned until the neutral point is found, and the reading is taken exactly as previously described, the operation repeated five or six times, the average taken with the rejection of aberrant readings, the average figure corrected for the deviation shown by the control observation from the sugar value of the control plate at the temperature of observation as given in the table, and the result taken as the polarization of the sugar. When a series of successive polarizations is made under the same conditions as regards temperature, position of the instrument with relation to the high intensity, of the light, etc., the control observation need not be made before each polarization, one such observation being sufficient for the entire series. The control must be repeated at least once an hour, however, and oftener when the operator has reason to think that any of the factors indicated above have been altered, for any such alteration of conditions may change the zero point of the instrument.

In the polarization of the quartz plates, as also in the polarization of very white sugars, difficulty may be experienced in obtaining a complete correspondence of both halves of the field. With a little practice this may be overcome and the neutral point found, but when it cannot, the ordinary telescope of the instrument may be replaced by another, which is furnished with the polariscope and which carries a yellow plate. This removes the difficulty and renders it possible, even for one not well accustomed to the instrument, to set it at the exact point of neutrality.